© 2021 Heldermann Verlag Journal of Lie Theory 31 (2021) 885–896

N. Ressayre

Institute de Mathématiques et de Modélisation, Université Montpellier 2, 34095 Montpellier, France ressayre@math.univ-montp2.fr

Reductions for Branching Coefficients

Let G be a connected reductive subgroup of a complex connected reductive group \hat{G} . The branching problem consists in decomposing irreducible \hat{G} -representations as sums of irreducible G-representations. The appearing multiplicities are parameterized by the pairs $(\nu, \hat{\nu})$ of dominant weights for G and \hat{G} respectively. The support $\text{LR}(G, \hat{G})$ of these decompositions is a finitely generated semigroup of such pairs of weights. The cone $\mathcal{LR}(G, \hat{G})$ generated by $\text{LR}(G, \hat{G})$ is convex polyhedral and the explicit list of inequalities characterizing it is known. There are the inequalities stating that ν and $\hat{\nu}$ are dominant and those giving faces containing regular weights (called regular faces), that are parameterized by cohomological conditions.

In this paper, we describe the multiplicities corresponding to the pairs $(\nu, \hat{\nu})$ belonging to any regular face of $\mathcal{LR}(G, \hat{G})$. More precisely, we prove that such a multiplicity is equal to a similar multiplicity for strict Levi subgroups of G and \hat{G} . This generalizes, unifies and simplifies, by different methods, results obtained by Brion, Derksen-Weyman, Roth, and others.

Keywords: Branching rules, eigencone.

MSC: 20G05, 20G20.