© 2021 Heldermann Verlag Journal of Lie Theory 31 (2021) 335–349

S. K. Gupta

Dept. of Mathematics, Sultan Qaboos University, Sultanate of Oman ${\tt gupta@squ.edu.om}$

K. E. Hare Dept. of Pure Mathematics, University of Waterloo, Canada kehare@uwaterloo.ca

The Smoothness of Convolutions of Singular Orbital Measures on Complex Grassmannians

It is well known that if G/K is any irreducible symmetric space and μ_a is a continuous orbital measure supported on the double coset KaK, then the convolution product, μ_a^k , is absolutely continuous for some suitably large number $k \leq \dim G/K$. The minimal value of k is known in some symmetric spaces and in the special case of compact groups or rank one compact symmetric spaces it has even been shown that μ_a^k belongs to the smaller space L^2 for some k. Here we prove that this L^2 property holds for all the compact, complex Grassmannian symmetric spaces, $SU(p+q)/S(U(p) \times U(q))$. Moreover, for the orbital measures at a dense set of points a, we prove that $\mu_a^2 \in L^2$ (or $\mu_a^3 \in L^2$ if p = q).

Keywords: Orbital measure, spherical functions, complex Grassmannian symmetric space, absolute continuity.

MSC: 43A90, 43A85; 58C35, 33C50.