© 2021 Heldermann Verlag Journal of Lie Theory 31 (2021) 127–148

M. S. Im

Dept. of Mathematical Sciences, United States Military Academy, West Point, NY 10996, U.S.A. im@usna.edu

T. Scrimshaw

School of Mathematics and Physics, University of Queensland, St. Lucia, QLD 4072, Australia t.scrimshaw@uq.edu.au

The Regularity of Almost-Commuting Partial Grothendieck-Springer Resolutions and Parabolic Analogs of Calogero-Moser Varieties

Consider the moment map $\mu: T^*(\mathfrak{p} \times \mathbb{C}^n) \to \mathfrak{p}^*$ for a parabolic subalgebra \mathfrak{p} of $\mathfrak{gl}_n(\mathbb{C})$. We prove that the preimage of 0 under μ is a complete intersection when \mathfrak{p} has finitely many *P*-orbits, where $P \subseteq \operatorname{GL}_n(\mathbb{C})$ is a parabolic subgroup such that $\operatorname{Lie}(P) = \mathfrak{p}$, and give an explicit description of the irreducible components. This allows us to study nearby fibers of μ as they are equidimensional, and one may also construct GIT quotients $\mu^{-1}(0)/\!\!/_{\chi}P$ by varying the stability condition χ . Finally, we study a variety analogous to the scheme studied by Wilson with connections to a Calogero-Moser phase space where only some of particles interact.

Keywords: Grothendieck-Springer resolution, moment map, complete intersection.

MSC: 14M10, 53D20, 17B08, 14L30; 14L24, 20G20.