© 2020 Heldermann Verlag Journal of Lie Theory 30 (2020) 1061–1089

P. Randriambololondrantomalala

Dép. de Mathématiques et Informatique, Faculté des Sciences, Université d'Antananarivo, Madagascar princypcpc@yahoo.fr

On Lie Algebras from Polynomial Poisson Structures

We consider a polynomial Poisson algebra \mathcal{P} on \mathbb{R}^{2n} $(n \geq 1)$ that is to say \mathcal{P} consists only of polynomials in \mathbb{R}^{2n} . We manage the conditions on \mathcal{P} in order to have: every derivation of \mathcal{P} is a differential operator of order one which takes its coefficients in \mathcal{P} . Otherwise, this result may not be true. More, we have an analogous result for the derived ideal $[\mathcal{P}, \mathcal{P}]$ of \mathcal{P} . If $[\mathcal{P}, \mathcal{P}] = \mathcal{P}$, derivations of the normalizer \mathfrak{N} of \mathcal{P} are sum of derivations of \mathcal{P} and non-local derivations of \mathfrak{N} . Without this last hypothesis on $[\mathcal{P}, \mathcal{P}]$, we can state a similar theorem about the normalizer of $[\mathcal{P}, \mathcal{P}]$. The first Chevalley-Eilenberg cohomology of these sub-algebras are computed. Moreover, some results from polynomial Hamiltonian vector fields Lie algebras on \mathbb{R}^{2n} has been found out. A special intention to Lie sub-algebras of the polynomial Poisson algebra $\mathbb{R}(x, y)$ on \mathbb{R}^2 in which the Jacobian conjecture holds is given. We give a definition on a sub-Lie algebra of $\mathbb{R}(x, y)$, it verifies the Jacobian conjecture.

Keywords: Lie algebras, polynomial Poisson structure, Jacobian conjecture, cohomology of Chevalley-Eilenberg, differential operators, non-local derivations.

MSC: 17B66; 53B15, 17B56.