© 2020 Heldermann Verlag Journal of Lie Theory 30 (2020) 779–810

C. Benson

Department of Mathematics, East Carolina University, Greenville, NC 27858, U.S.A. ${\tt bensonf@ecu.edu}$

G. Ratcliff

Department of Mathematics, East Carolina University, Greenville, NC 27858, U.S.A. ratcliffg@ecu.edu

Spaces of Bounded Spherical Functions for Irreducible Nilpotent Gelfand Pairs: Part I

In prior work an orbit method, due to Pukanszky and Lipsman, was used to produce an injective mapping $\Psi: \Delta(K, N) \to \mathfrak{n}^*/K$ from the space of bounded *K*-spherical functions for a nilpotent Gelfand pair (K, N) into the space of *K*orbits in the dual for the Lie algebra \mathfrak{n} of N. We have conjectured that Ψ is a topological embedding. This has been proved for all pairs (K, N) with N a Heisenberg group. A nilpotent Gelfand pair (K, N) is said to be *irreducible* if K acts irreducibly on $\mathfrak{n}/[\mathfrak{n},\mathfrak{n}]$. In this paper and its sequel we will prove that Ψ is an embedding for all such irreducible pairs. Our proof involves careful study of the non-Heisenberg entries in Vinberg's classification of irreducible nilpotent Gelfand pairs. Part I concerns generalities and six related families of examples from Vinberg's list in which the center for \mathfrak{n} can have arbitrarily large dimension.

Keywords: Gelfand pairs, spherical functions, nilpotent Lie groups, orbit method.

MSC: 22E30, 43A90.