© 2020 Heldermann Verlag Journal of Lie Theory 30 (2020) 715–765

B. Harris U.S.A. benjaminlharris@outlook.com

Y. Oshima

Dept. of Pure and Applied Mathematics, Grad. School of Information Science and Technology, Osaka University, Suita Osaka 565-0871, Japan oshima@ist.osaka-u.ac.jp

Irreducible Characters and Semisimple Coadjoint Orbits

When $G_{\mathbb{R}}$ is a real, linear algebraic group, the orbit method predicts that nearly all of the unitary dual of $G_{\mathbb{R}}$ consists of representations naturally associated to orbital parameters (\mathcal{O}, Γ) . If $G_{\mathbb{R}}$ is a real, reductive group and \mathcal{O} is a semisimple coadjoint orbit, the corresponding unitary representation $\pi(\mathcal{O}, \Gamma)$ may be constructed utilizing Vogan and Zuckerman's cohomological induction together with Mackey's real parabolic induction. In this article, we give a geometric character formula for such representations $\pi(\mathcal{O}, \Gamma)$. Special cases of this formula were previously obtained by Harish-Chandra and Kirillov when $G_{\mathbb{R}}$ is compact and by Rossmann and Duflo when $\pi(\mathcal{O}, \Gamma)$ is tempered.

Keywords: Semisimple orbit, coadjoint orbit, orbit method, Kirillov's character formula, cohomological induction, parabolic induction, reductive group.

MSC: 22E46.