© 2020 Heldermann Verlag Journal of Lie Theory 30 (2020) 407–424

K. H. Hofmann

Fachbereich Mathematik, Technische Universität, 64289 Darmstadt, Germany hofmann@mathematik.tu-darmstadt.de

L. Kramer

Mathematisches Institut, Universität Münster, 48149 Münster, Germany linus.kramer@uni-muenster.de

On Weakly Complete Group Algebras of Compact Groups

A topological vector space over the real or complex field \mathbb{K} is *weakly complete* if it is isomorphic to a power \mathbb{K}^J . For each topological group G there is a *weakly complete topological group Hopf algebra* $\mathbb{K}[G]$ over $\mathbb{K} = \mathbb{R}$ or \mathbb{C} , for which three insights are contributed:

Firstly, there is a comprehensive structure theorem saying that the topological algebra $\mathbb{K}[G]$ is the cartesian product of its finite dimensional minimal ideals whose structure is clarified.

Secondly, for a compact abelian group G and its character group \hat{G} , the weakly complete complex Hopf algebra $\mathbb{C}[G]$ is the product algebra $\mathbb{C}^{\hat{G}}$ with the comultiplication $c \colon \mathbb{C}^{\hat{G}} \to \mathbb{C}^{\hat{G} \times \hat{G}} \cong \mathbb{C}^{\hat{G}} \otimes \mathbb{C}^{\hat{G}}$, $c(F)(\chi_1, \chi_2) = F(\chi_1 + \chi_2)$ for $F \colon \hat{G} \to \mathbb{C}$ in $\mathbb{C}^{\hat{G}}$. The subgroup $\Gamma(\mathbb{C}^{\hat{G}})$ of grouplike elements of the group of units of the algebra $\mathbb{C}^{\hat{G}}$ is $\operatorname{Hom}(\hat{G}, (\mathbb{C} \setminus \{0\}, .))$ while the vector subspace of primitive elements is $\operatorname{Hom}(\hat{G}, (\mathbb{C}, +))$. This forces the group $\Gamma(\mathbb{R}[G]) \subseteq \Gamma(\mathbb{C}[G])$ to be $\operatorname{Hom}(\hat{G}, \mathbb{S}^1) \cong \hat{G} \cong G$ with the complex circle group \mathbb{S}^1 . While the relation $\Gamma(\mathbb{R}[G]) \cong G$ remains true for any compact group, $\Gamma(\mathbb{C}[G]) \cong G$ holds for a compact abelian group G if and only if it is profinite.

Thirdly, for each pro-Lie algebra L a weakly complete universal enveloping Hopf algebra $\mathbf{U}_{\mathbb{K}}(L)$ over \mathbb{K} exists such that for each connected compact group G the weakly complete real group Hopf algebra $\mathbb{R}[G]$ is a quotient Hopf algebra of $\mathbf{U}_{\mathbb{R}}(\mathfrak{L}(G))$ with the (pro-)Lie algebra $\mathfrak{L}(G)$ of G. The group $\Gamma(\mathbf{U}_{\mathbb{R}}(\mathfrak{L}(G)))$ of grouplike elements of the weakly complete enveloping algebra of $\mathfrak{L}(G)$ maps onto $\Gamma(\mathbb{R}[G]) \cong G$ and is therefore nontrivial in contrast to the case of the discrete classical enveloping Hopf algebra of an abstract Lie algebra.

Keywords: Weakly complete vector space, weakly complete algebra, group algebra, Hopf algebra, compact group, Lie algebra, universal enveloping algebra.

MSC: 22E15, 22E65, 22E99.