© 2020 Heldermann Verlag Journal of Lie Theory 30 (2020) 371–405

G. Gierz

Department of Mathematics, University of California, Riverside, CA 92521, U.S.A. gierz@ucr.edu

On the Areas of Level Sets in Compact Connected Sublattices of Three-Dimensional Euclidean Space

As is well-known the three-dimensional Euclidean space \Re^3 , equipped with the order relation $(x_1, x_2, x_3) \leq (x'_1, x'_2, x'_3)$ if $x_i \leq x'_i$ for i = 1, 2, 3, is a distributive, topological lattice. Let L be a compact, connected sublattice of \Re^3 . For $(x_1, x_2, x_3) \in L$ we define $\lambda(x_1, x_2, x_3) = x_1 + x_2 + x_3$ and for $r \in \Re$ we let $L_r = \{(x_1, x_2, x_3) \in L : \lambda(x_1, x_2, x_3) = r\}$. If $\mu_L(r)$ denotes the surface area of L_r , then we show that the function $r \mapsto \mu_L(r)$ is continuously differentiable, and that the value of $\mu'_L(r)$ can be computed in two different ways: Either as an integral of a certain function over the boundary of L_r , or as the value of the expression $\sqrt{3} (\lambda(\sup L_r) + \lambda(\inf L_r) - 2r)$.

Keywords: Level sets and rank functions, sublattices of R³, integral formulas.

MSC: 06B30, 26B20; 54F05, 26B15.