© 2015 Heldermann Verlag Journal of Lie Theory 25 (2015) 1139–1165

K. Ebrahimi-Fard

ICMAT – UAM, Calle Nicolás Cabrera 13-15, Campus de Cantoblanco, 28049 Madrid, Spain $\tt kurusch@icmat.es$

A. Lundervold

Dept. of Computing Mathematics and Physics, Bergen University College, Postboks 7030, 5020 Bergen, Norway alexander.lundervold@hib.no

H. Z. Munthe-Kaas

Dept. of Mathematics, University of Bergen, Postbox 7800, 5020 Bergen, Norway hans.munthe-kaas@math.uib.no

On the Lie Enveloping Algebra of a Post-Lie Algebra

We consider pairs of Lie algebras \mathfrak{g} and $\overline{\mathfrak{g}}$, defined over a common vector space, where the Lie brackets of \mathfrak{g} and $\overline{\mathfrak{g}}$ are related via a post-Lie algebra structure. The latter can be extended to the Lie enveloping algebra $\mathcal{U}(\mathfrak{g})$. This permits us to define another associative product on $\mathcal{U}(\mathfrak{g})$, which gives rise to a Hopf algebra isomorphism between $\mathcal{U}(\overline{\mathfrak{g}})$ and a new Hopf algebra assembled from $\mathcal{U}(\mathfrak{g})$ with the new product.

For the free post-Lie algebra these constructions provide a refined understanding of a fundamental Hopf algebra appearing in the theory of numerical integration methods for differential equations on manifolds. In the pre-Lie setting, the algebraic point of view developed here also provides a concise way to develop Butcher's order theory for Runge-Kutta methods.

Keywords: Rooted trees, combinatorial Hopf algebras, post-Lie algebras, universal enveloping algebras, numerical Lie group integration, geometric numerical integration, Butcher's order theory.

MSC: 65L, 53C, 16T