© 2014 Heldermann Verlag Journal of Lie Theory 24 (2014) 979–1011

K. Furutani

Department of Mathematics, Faculty of Science and Technology, Science University of Tokyo, 2641 Yamazaki, Noda, Chiba 278-8510, Japan furutani_kenro@ma.noda.tus.ac.jp

I. Markina

Department of Mathematics, University of Bergen, P.O.Box 7803, Bergen 5020, Norway irina.markina@math.uib.no

Existence of Lattices on General H-Type Groups

Let \mathcal{N} be a two step nilpotent Lie algebra endowed with non-degenerate scalar product $\langle \cdot, \cdot \rangle$ and let $\mathcal{N} = V \oplus_{\perp} Z$, where Z is the center of the Lie algebra and V its orthogonal complement with respect to the scalar product. We prove that if $(V, \langle \cdot, \cdot \rangle_V)$ is the Clifford module for the Clifford algebra $\operatorname{Cl}(Z, \langle \cdot, \cdot \rangle_Z)$ such that the homomorphism $J \colon \operatorname{Cl}(Z, \langle \cdot, \cdot \rangle_Z) \to \operatorname{End}(V)$ is skew symmetric with respect to the scalar product $\langle \cdot, \cdot \rangle_V$, or in other words the Lie algebra \mathcal{N} satisfies conditions of general H-type Lie algebras [see P. Ciatti, Scalar products on Clifford modules and pseudo-H-type Lie algebras, Math. Nachr. 202 (2009) 44– 68; and: M. Godoy Molina, A. Korolko and I. Markina, Sub-semi-Riemannian geometry of general H-type groups, Bull. Sci. Math. 137 (2013) 805–833], then there is a basis with respect to which the structural constants of the Lie algebra \mathcal{N} are all ± 1 or 0.

Keywords: Clifford module, nilpotent two step algebra, lattice, general H-type algebras.

MSC: 17B30, 22E25