© 2014 Heldermann Verlag Journal of Lie Theory 24 (2014) 931–956

M. V. Ignatyev

Chair of Algebra and Geometry, Samara State University, Ak. Pavlova 1, Samara 443011, Russia mihail.ignatev@gmail.com

A. S. Vasyukhin Chair of Algebra and Geometry, Samara State University, Ak. Pavlova 1, Samara 443011, Russia safian.malk@gmail.com

Rook Placements in A_n and Combinatorics of *B*-Orbit Closures

Let G be a complex reductive group, B be a Borel subgroup in G, n be the Lie algebra of the unipotent radical of B, and n^* be its dual space. Let Φ be the root system of G, and let Φ^+ be the set of positive roots with respect to B. A subset of Φ^+ is called a rook placement if it consists of roots with pairwise non-positive inner products. To each rook placement D one can associate the coadjoint orbit Ω_D of B in n^* . By definition, Ω_D is the orbit of f_D , where f_D is the sum of root covectors corresponding to the roots from D. We find the dimension of Ω_D and construct a polarization of n at f_D . We also study the partial order on the set of rook placements induced by the incidences among the closures of orbits associated with rook placements.

Keywords: Coadjoint orbits, Borel subgroup, root systems, rook placements, polarizations.

MSC: 22E25, 17B22