© 2014 Heldermann Verlag Journal of Lie Theory 24 (2014) 625–639

G. W. Schwarz

Dept. of Mathematics, Brandeis University, Waltham, MA 02454-9110, U.S.A. schwarz@brandeis.edu

Lifting Automorphisms of Quotients of Adjoint Representations

Let \mathfrak{g}_i be a simple complex Lie algebra, $1 \leq i \leq d$, and let $G = G_1 \times \cdots \times$ G_d be the corresponding adjoint group. Consider the G-module $V = \oplus r_i \mathfrak{g}_i$ where $r_i \in \mathbb{N}$ for all *i*. We say that V is *large* if all $r_i \geq 2$ and $r_i \geq 3$ if G_i has rank 1. In "Quotients, automorphisms and differential operators", http://arxiv.org/abs/1201.6369 (2012), we showed that when V is large any algebraic automorphism ψ of the quotient $Z := V/\!\!/G$ lifts to an algebraic mapping $\Psi: V \to V$ which sends the fiber over z to the fiber over $\psi(z), z \in Z$. (Most cases were already handled in J. Kuttler, Lifting automorphisms of generalized adjoint quotients, Transformation Groups 16 (2011) 1115–1135.) We also showed that one can choose a biholomorphic lift Ψ such that $\Psi(qv) = \sigma(q)\Psi(v)$, $g \in G, v \in V$, where σ is an automorphism of G. This leaves open the following questions: Can one lift holomorphic automorphisms of Z? Which automorphisms lift if V is not large? We answer the first question in the affirmative and also answer the second question. Part of the proof involves establishing the following result for V large: Any algebraic differential operator of order k on Z lifts to a G-invariant algebraic differential operator of order k on V. We also consider the analogues of the questions above for actions of compact Lie groups.

Keywords: Differential operators, automorphisms, quotients, adjoint representation.

MSC: 20G20, 22E46, 57S15