© 2013 Heldermann Verlag Journal of Lie Theory 23 (2013) 803–825

X. Feng

Dept. of Applied Mathematics, Northwestern Polytechnical University, Xi'an - Shaanxi 710129, P. R. China fxj467@mail.nwpu.edu.cn

P. Niu

Dept. of Applied Mathematics, Northwestern Polytechnical University, Xi'an – Shaanxi 710129, P. R. China pengchengniu@nwpu.edu.cn

Interior Regularity for Degenerate Elliptic Equations with Drift on Homogeneous Groups

Let G be a homogeneous group and let $X_0, X_1, X_2, \ldots, X_{p_0}$ be left invariant real vector fields on G satisfying Hörmander's rank condition. Assume that $X_1, X_2, \ldots, X_{p_0}$ are homogeneous of degree one and X_0 is homogeneous of degree two. In this paper, we study the following equation with drift:

$$Lu \equiv \sum_{i,j=1}^{p_0} X_i(a_{ij}(x)X_ju) + a_0X_0u = \sum_{j=1}^{p_0} X_jF_j(x) ,$$

where $a_{ij}(x)$ are real valued, bounded measurable functions defined in a domain $\Omega \subset G$, $a_{ij}(x) = a_{ji}(x)$, satisfying the uniform ellipticity condition in \mathbb{R}^{p_0} and $a_0 \in \mathbb{R} \setminus \{0\}$. Moreover, the coefficients a_{ij} belong to the class VMO (Vanishing Mean Oscillation) with respect to the subelliptic metric induced by the vector fields $X_0, X_1, X_2, \ldots, X_{p_0}$. We derive local L^p estimates for second order derivatives and Hölder estimates by establishing the representation formulas and higher order integrability of weak solutions to the above equation.

Keywords: Homogeneous group, interior regularity, vector fields.

MSC: 22E60, 35R03, 49N60