© 2012 Heldermann Verlag Journal of Lie Theory 22 (2012) 541–555

P. Somberg

Faculty of Mathematics and Physics, Sokolovska 83, Praha 8 - Karlin, Czech Republic <code>somberg@karlin.mff.cuni.cz</code>

Homomorphisms of Generalized Verma Modules, BGG Parabolic Category $\mathcal{O}^{\mathfrak{p}}$ and Juhl's Conjecture

Let $\mathcal{M}_{\lambda}(\mathfrak{g},\mathfrak{p})$, $\mathcal{M}_{\mu}(\mathfrak{g}',\mathfrak{p}')$ be the generalized Verma modules for $\mathfrak{g} = \mathrm{so}(p + 1, q + 1), \mathfrak{g}' = \mathrm{so}(p, q + 1)$ induced from characters λ , μ of the standard maximal parabolic (conformal) subalgebras $\mathfrak{p}, \mathfrak{p}' = \mathfrak{g}' \cap \mathfrak{p}$. Motivated by questions about the existence of invariant differential operators in conformal geometry, we explain, reformulate and prove an extended version of Juhl's conjecture on the structure of $\mathcal{U}(\mathfrak{g}')$ -homomorphisms of generalized Verma modules from $\mathcal{M}_{\lambda}(\mathfrak{g}',\mathfrak{p}')$ to $\mathcal{M}_{\mu}(\mathfrak{g},\mathfrak{p})$. The answer has a natural formulation as a branching problem in the BGG parabolic category $\mathcal{O}^{\mathfrak{p}'}$ rather than the set of generalized Verma modules alone.

Keywords: Branching rules, generalized Verma modules, BGG parabolic category O^p , Juhl's conjectures.

MSC: 22E47, 17B10, 13C10