© 2012 Heldermann Verlag Journal of Lie Theory 22 (2012) 301–360

M. Hunziker

Dept. of Mathematics, Baylor University, Waco, TX 76798-7328, U.S.A. Markus_Hunziker@baylor.edu

M. R. Sepanski

Dept. of Mathematics, Baylor University, Waco, TX 76798-7328, U.S.A. Mark_Sepanski@baylor.edu

R. J. Stanke

Dept. of Mathematics, Baylor University, Waco, TX 76798-7328, U.S.A. Ronald_Stanke@baylor.edu

The Minimal Representation of the Conformal Group and Classical Solutions to the Wave Equation

Using an idea of Dirac, we give a geometric construction of a unitary lowest weight representation \mathcal{H}^+ and a unitary highest weight representation \mathcal{H}^- of a double cover of the conformal group $\mathrm{SO}(2, n+1)_0$ for every $n \geq 2$. The smooth vectors in \mathcal{H}^+ and \mathcal{H}^- consist of complex-valued solutions to the wave equation $\Box f = 0$ on Minkowski space $\mathbb{R}^{1,n} = \mathbb{R} \times \mathbb{R}^n$ and the invariant product is the usual Klein-Gordon product. We then give explicit orthonormal bases for the spaces \mathcal{H}^+ and \mathcal{H}^- consisting of weight vectors; when n is odd, our bases consist of rational functions. Furthermore, we show that if $\Phi, \Psi \in \mathcal{S}(\mathbb{R}^{1,n})$ are real-valued Schwartz functions and $u \in \mathcal{C}^{\infty}(\mathbb{R}^{1,n})$ is the (real-valued) solution to the Cauchy problem $\Box u = 0, u(0, x) = \Phi(x), \partial_t u(0, x) = \Psi(x)$, then there exists a unique real-valued $v \in \mathcal{C}^{\infty}(\mathbb{R}^{1,n})$ such that $u + iv \in \mathcal{H}^+$ and $u - iv \in \mathcal{H}^-$.

Keywords: Conformal group, minimal representation, wave equation, classical solutions, Cauchy problem.

MSC: 22E45, 22E70, 35A09, 35A30, 58J70