© 2011 Heldermann Verlag Journal of Lie Theory 21 (2011) 987–1007

K. Hare

Dept. of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 ${\tt kehare@uwaterloo.ca}$

P. Skoufranis

Dept. of Mathematics, University of California, Los Angeles, CA 90095–1555, U.S.A. pskoufra@math.ucla.edu

The Smoothness of Orbital Measures on Exceptional Lie Groups and Algebras

Suppose that G is a compact, connected, simple, exceptional Lie group with Lie algebra \mathfrak{g} . We determine the sharp minimal exponent k_0 , which depends on G or \mathfrak{g} , such that the convolution of any k_0 continuous, G-invariant measures is absolutely continuous with respect to Haar measure. The exponent k_0 is also the minimal integer such that any k_0 -fold product of conjugacy classes in G or k_0 -fold sum of adjoint orbits in \mathfrak{g} has non-empty interior. Unlike in the classical case, the answer can be less than the rank of G or \mathfrak{g} .

We also establish a dichotomy for orbital measures μ , supported on non-trivial conjugacy classes or adjoint orbits of minimal non-zero dimension: for each k, either $\mu^k \in L^2$ or μ^k is singular with respect to Haar measure.

Keywords: Compact Lie group, compact Lie algebra, orbital measure, orbit, conjugacy class.

MSC: 43A80; 22E30 58C3