© 2011 Heldermann Verlag Journal of Lie Theory 21 (2011) 771–785

I. Beltiță

Institute of Mathematics "Simion Stoilow", Romanian Academy of Sciences, P. O. Box 1-764, Bucharest, Romania Ingrid.Beltita@imar.ro

D. Beltiță

Institute of Mathematics "Simion Stoilow", Romanian Academy of Sciences, P. O. Box 1-764, Bucharest, Romania Daniel.Beltita@imar.ro

On Differentiability of Vectors in Lie Group Representations

We address a linearity problem for differentiable vectors in representations of infinite-dimensional Lie groups on locally convex spaces, which is similar to the linearity problem for the directional derivatives of functions. In particular, we find conditions ensuring that if $\pi: G \to \operatorname{End}(\mathcal{Y})$ is such a representation, and $y \in \mathcal{Y}$ is a vector such that $d\pi(x)y$ makes sense for every x in the Lie algebra \mathfrak{g} of G, then the mapping $d\pi(\cdot)y: \mathfrak{g} \to \mathcal{Y}$ is linear and continuous.

Keywords: Lie group, topological group, unitary representation, smooth vector.

MSC: 22E65; 22E66, 22A10, 22A25