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The Tame Algebra

The tame subgroup I; of the Iwahori subgroup I and the tame Hecke algebra
H;=C_.(I;\G/I;) are introduced. It is shown that the tame algebra has a presen-
tation by means of generators and relations, similar to that of the Iwahori-Hecke
algebra H = C.(I\G/I). From this it is deduced that each of the generators of
the tame algebra is invertible. This has an application concerning an irreducible
admissible representation 7 of an unramified reductive p-adic group G: mw has
a nonzero vector fixed by the tame group, and the Iwahori subgroup I acts on
this vector by a character x, iff 7 is a constituent of the representation induced
from a character of the minimal parabolic subgroup, denoted x 4, which extends
Xx. The proof is an extension to the tame context of an unpublished argument of
Bernstein, which he used to prove the following. An irreducible admissible rep-
resentation 7 of a quasisplit reductive p-adic group has a nonzero Iwahori-fixed
vector iff it is a constituent of a representation induced from an unramified char-
acter of the minimal parabolic subgroup. The invertibility of each generator of
H, is finally used to give a Bernstein-type presentation of Hy, also by means of
generators and relations, as an extension of an algebra with generators indexed
by the finite Weyl group, by a finite index maximal commutative subalgebra,
reflecting more naturally the structure of G and its maximally split torus.
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