© 2009 Heldermann Verlag Journal of Lie Theory 19 (2009) 735–766

B. Širola

Dept. of Mathematics, University of Zagreb, Bijenicka 30, 10000 Zagreb, Croatia sirola@math.hr

Pairs of Lie Algebras and their Self-Normalizing Reductive Subalgebras

We consider a class \mathcal{P} of pairs $(\mathfrak{g}, \mathfrak{g}_1)$ of **K**-Lie algebras $\mathfrak{g}_1 \subset \mathfrak{g}$ satisfying certain "rigidity conditions"; here **K** is a field of characteristic 0, \mathfrak{g} is semisimple, and \mathfrak{g}_1 is reductive. We provide some further evidence that \mathcal{P} contains a number of nonsymmetric pairs that are worth studying; e.g., in some branching problems, and for the purposes of the geometry of orbits. In particular, for an infinite series $(\mathfrak{g}, \mathfrak{g}_1) = (\mathfrak{sl}(n+1), \mathfrak{sl}(2))$ we show that it is in \mathcal{P} , and precisely describe a \mathfrak{g}_1 -module structure of the Killing-orthogonal $\mathfrak{p}(n)$ of \mathfrak{g}_1 in \mathfrak{g} . Using this and the Kostant's philosophy concerning the exponents for (complex) Lie algebras, we obtain two more results. First; suppose **K** is algebraically closed, \mathfrak{g} is semisimple all of whose factors are classical, and \mathfrak{s} is a principal TDS. Then $(\mathfrak{g}, \mathfrak{s})$ belongs to \mathcal{P} . Second; suppose $(\mathfrak{g}, \mathfrak{g}_1)$ is a pair satisfying certain technical condition **C**, and there exists a semisimple $\mathfrak{s} \subseteq \mathfrak{g}_1$ such that $(\mathfrak{g}, \mathfrak{s})$ is from \mathcal{P} (e.g., \mathfrak{s} is a principal TDS). Then $(\mathfrak{g}, \mathfrak{g}_1)$ is from \mathcal{P} as well. Finally, given a pair $(\mathfrak{g}, \mathfrak{g}_1)$, we have some useful observations concerning the relationship between the coadjoint orbits corresponding to \mathfrak{g} and \mathfrak{g}_1 , respectively.

Keywords: Pair of Lie algebras, semisimple Lie algebra, reductive subalgebra, self-normalizing subalgebra, principal nilpotent element, principal TDS, trivial extension.

MSC: 17B05, 17B10, 17B20