© 2009 Heldermann Verlag Journal of Lie Theory 19 (2009) 661–670

G. van Dijk

Mathematical Institute, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands dijk@math.leidenuniv.nl

About the Relation between Multiplicity Free and Strong Multiplicity Free

Let G be a unimodular Lie group with finitely many connected components and let H be a closed unimodular subgroup of G. Let π be an irreducible unitary representation of G on \mathcal{H} and τ one of H on V. Denote by $\operatorname{Hom}_H(\mathcal{H}_{\infty}, V)$ the vector space of continuous linear mappings $\mathcal{H}_{\infty} \to V$ that commute with the H-actions. Set $m(\pi, \tau) = \dim \operatorname{Hom}_H(\mathcal{H}_{\infty}, V)$. The pair (G, H) is called a multiplicity free pair if $m(\pi, \tau) \leq 1$ for all π and τ . We show: if every π has a distribution character, then (G, H) is a multiplicity free pair if and only if $(G \times H, \operatorname{diag}(H \times H))$ is a generalized Gelfand pair.

Keywords: Gelfand pair, multiplicity free, strong multiplicity free.

MSC: 4301, 4302, 43A85, 22Dxx