© 2008 Heldermann Verlag Journal of Lie Theory 18 (2008) 851–867

R. Knevel

Université de Luxembourg, Unité de Recherche en Mathématiques, Av. de la Faïencérie 162a, 1511 Luxembourg roland.knevel@uni.lu

A Satake Type Theorem for Super Automorphic Forms

The aim of this article is a Satake type theorem for super automorphic forms on a complex bounded symmetric super domain \mathcal{B} of rank 1 with respect to a lattice Γ . 'Super' means: additional odd (anticommuting) coordinates on an ordinary complex bounded symmetric domain B (the so-called body of \mathcal{B}) of rank 1. Satake's theorem says that for large weight k all spaces $sM_k(\Gamma) \cap L_k^s(\Gamma \setminus \mathcal{B}),$

 $s \in [1, \infty]$ coincide, where $sM_k(\Gamma)$ denotes the space of super automorphic forms for Γ with respect to the weight k, and $L_k^s(\Gamma \setminus \mathcal{B})$ denotes the space of s-intergrable functions with respect to a certain measure on the quotient $\Gamma \setminus \mathcal{B}$ depending on k. So all these spaces are equal to the space $sS_k(\Gamma) :=$ $sM_k(\Gamma) \cap L_k^2(\Gamma \setminus \mathcal{B})$ of super cusp forms for Γ to the weight k.

As it is already well known for automorphic forms on ordinary complex bounded symmetric domains, we will give a proof of this theorem using an unbounded realization \mathcal{H} of \mathcal{B} and Fourier decomposition at the cusps of the quotient $\Gamma \setminus B$ mapped to ∞ via a partial Cayley transformation.

Keywords: Automorphic and cusp forms, complex bounded symmetric domains, super symmetry, semisimple Lie groups, unbounded realization of a complex bounded symmetric domain.

MSC: 11F55; 32C11