© 2006 Heldermann Verlag Journal of Lie Theory 16 (2006) 225–238

J. Abdennadher

Faculté des Sciences, Université de Sfax, Route de Soukra - km 4, 3038 Sfax, Tunisia ${\tt abdennadher_jawhar@yahoo.fr}$

C. Molitor-Braun

Lab. de Mathématiques, Université du Luxembourg, 162A Av. de la Faïencerie, 1511 Luxembourg

carine.molitor@uni.lu

Operator Kernels for Irreducible Unitary Representations of Solvable Exponential Lie Groups

Let G be a connected, simply connected, exponential solvable Lie group. The irreducible unitary representations of G may be obtained by the Kirillov-Bernat orbit method. Let $l \in \mathfrak{g}^*$, \mathfrak{p} a Pukanszky polarization associated to l, $P = \exp \mathfrak{p}$, χ_l the corresponding character of P and $\pi_l = \operatorname{ind}_P^G \chi_l$ the associated unitary representation. We show through an example that not all the functions of $\mathcal{C}_c^{\infty}(G/P, G/P, \chi_l)$ (\mathcal{C}^{∞} -functions with compact support on $G/P \times G/P$ satisfying a certain covariance condition) are kernel functions of some operator of the form $\pi_l(f)$, $f \in L^1(G)$, even if the polarization is well chosen. This contradicts a result of H. Leptin [J. Reine Angew. Math. 494 (1998) 1–34]). But if the polarization \mathfrak{p} is an ideal of \mathfrak{g} , then the result of Leptin is true, the corresponding retract from $\mathcal{C}_c^{\infty}(G/P, G/P, \chi_l)$ into $L^1(G)$ exists and a construction algorithm of the function f may be indicated.

Keywords: Irreducible unitary representation, kernel of an operator, retract.

MSC: 43A20