© 2004 Heldermann Verlag

Journal of Lie Theory 14 (2004) 509-522

Alan T. Huckleberry, Joseph A. Wolf

Injectivity of the Double Fibration Transform for Cycle Spaces of Flag Domains

The basic setup consists of a complex flag manifold Z = G/Q where G is a complex semisimple Lie group and Q is a parabolic subgroup, an open orbit $D = G_0(z) \subset Z$ where G_0 is a real form of G, and a G_0 -homogeneous holomorphic vector bundle $\mathbb{E} \to D$. The topic here is the double fibration transform \mathcal{P} : $H^q(D; \mathcal{O}(\mathbb{E})) \to H^0(\mathcal{M}_D; \mathcal{O}(\mathbb{E}'))$ where q is given by the geometry of D, \mathcal{M}_D is the cycle space of D, and $\mathbb{E}' \to \mathcal{M}_D$ is a certain naturally derived holomorphic vector bundle. Schubert intersection theory is used to show that \mathcal{P} is injective whenever \mathbb{E} is sufficiently negative.