© 2004 Heldermann Verlag

Journal of Lie Theory 14 (2004) 317-338

Enrico Leuzinger

Tits Geometry, Arithmetic Groups, and the Proof of a Conjecture of Siegel

Let X = G/K be a Riemannian symmetric space of noncompact type and of rank ≥ 2 . An irreducible, non-uniform lattice $\Gamma \subset G$ in the isometry group of X is arithmetic and gives rise to a locally symmetric space $V = \Gamma \setminus X$. Let $\pi : X \to V$ be the canonical projection. Reduction theory for arithmetic groups provides a dissection $V = \prod_{i=1}^{k} \pi(X_i)$ with $\pi(X_0)$ compact and such that the restiction of π to X_i is injective for each *i*. In this paper we complete reduction theory by focusing on metric properties of the sets X_i . We detect subsets C_i of X_i (Q–Weyl chambers) such that $\pi_{|C_i}$ is an isometry and such that C_i is a net in X_i . This result is then used to prove a conjecture of C.L. Siegel. We also show that V is quasi-isometric to the Euclidean cone over a finite simplicial complex and study the Tits geometry of V.