H. Katsuura

San Jose State University, San Jose, U.S.A.
hidefumi.katsuura@sjsu.edu

Central and Twin Tetrahedra

Given a tetrahedron T, the tetrahedron T^{\prime} constructed by connecting the four centroids of its faces is called the central tetrahedron of T. A tetrahedron T can be inscribed in a parallelepiped W so that the edges of T are the diagonals of the faces of W. By drawing the remaining six diagonals on the faces of the parallelepiped W, we obtain a new tetrahedron T^{\star}, and call it the twin tetrahedron of T. Let S^{\star} and $S^{\star^{\prime}}$ be the circumcenters of T^{\star} and $T^{\star \prime}$, respectively. We will prove that all tetrahedra T, T^{\prime}, T^{\star}, and $T^{\star \prime}$ have the centroid in common, say P, and the five points $S, S^{\star^{\prime}}, P, S^{\prime}$, and S^{\star} are collinear in this order such that $\overrightarrow{S^{\prime} S^{*}}=2 \overrightarrow{P S^{\prime}}, \overrightarrow{S P}=3 \overrightarrow{P S^{\prime}}, \overrightarrow{S S^{\prime}}=2 \overrightarrow{S^{\prime} S^{\star}}$, and $\overrightarrow{S S^{*}}=3 \overrightarrow{S^{\prime} S^{*}}$. Moreover, we prove that (1) T^{\prime} and $T^{\star^{\prime}}$ are twins, and (2) if the tetrahedron T is orthocentric, then $T, T^{\prime}, T^{\star}, T^{\star \prime}$ are orthocentric with orthocenters $S^{\star}, S^{\star^{\prime}}, S$, and S^{\prime}, respectively.

Keywords: Central tetrahedron, twin tetrahedron, centroid, circumcenter, orthocentric tetrahedron, orthocenter.

MSC: 51M04.

