

H. Han

College of Science, Northwest Agriculture and Forestry University, Xianyang, Shaanxi, China
han-huhe@nwafu.edu.cn

Approximation of Spherical Convex Bodies of Constant Width $\pi/2$

Let \mathbb{S}^2 be the unit sphere in \mathbb{R}^3 and let $C \subset \mathbb{S}^2$ be a spherical convex body of constant width τ . It is known that

- (i) if $\tau < \pi/2$ then for any $\varepsilon > 0$ there exists a spherical convex body C_ε of constant width τ whose boundary consists only of arcs of circles of radius τ such that the Hausdorff distance between C and C_ε is at most ε ;
- (ii) if $\tau > \pi/2$ then for any $\varepsilon > 0$ there exists a spherical convex body C_ε of constant width τ whose boundary consists only of arcs of circles of radius $\tau - \frac{\pi}{2}$ and great circle arcs such that the Hausdorff distance between C and C_ε is at most ε .

In this paper, we present an approximation of the remaining case $\tau = \pi/2$, that is, if $\tau = \pi/2$ then for any $\varepsilon > 0$ there exists a spherical polygon \mathcal{P}_ε of constant width $\pi/2$ such that the Hausdorff distance between C and \mathcal{P}_ε is at most ε .

Keywords: Constant width, approximation, spherical polygon, Hausdorff distance.

MSC: 52A55.