

J. C. Ferrando

Centro de Investigacion Operativa, Universidad Miguel Hernandez, Elche, Spain
jc.ferrando@umh.es

S. A. Saxon

Dept. of Mathematics, University of Florida, Gainesville, U.S.A.

The Ever Large Subspace $C_p(Y|X)$: Distinguished, Montel, Covered Nicely?

$C_p(Y|X)$ denotes the real-valued continuous functions on $Y \subseteq X$ having continuous extensions to a Tychonoff space X , with pointwise topology inherited from $C_p(Y)$. We recently proved $C_p(Y)$ is distinguished \Leftrightarrow it is a large subspace of \mathbb{R}^Y . We prove $C_p(Y|X)$ is always a large subspace of $C_p(Y)$. Thus $C_p(Y|X)$ is always quasibarrelled; always has a feral strong dual; has a quasibarrelled countable enlargement $\Leftrightarrow Y$ is infinite; is distinguished $\Leftrightarrow C_p(Y)$ is distinguished; is a Montel space $\Leftrightarrow Y$ is discrete and C -embedded in X . ‘Nice’ countable covers for $C_p(Y|X)$ yield potent summary theorems that solve open problems, characterize P -spaces anew, and complete the list of Velichko variations. For example, Summary III: Assume Y is dense in X . Y is a P -space, or X is pseudocompact, or both $\Leftrightarrow C_p(Y|X)$ is countably covered by sets that are, respectively, relatively sequentially complete in $C_p(Y)$, or bounded, or both. Putting $Y = X$, one quickly comprehends Velichko variations à la Arkhangel’skii.

Keywords: Large subspace, distinguished, Montel, quasibarrelled, $C_p(X)$, C -embedded.

MSC: 46A03, 46A08, 46E10, 54C35.