

G. Piscitelli

Dip. di Scienze Economiche, Giuridiche, Informatiche e Motorie, Universita degli Studi di Napoli Parthenope, Nola, Italy
gianpaolo.piscitelli@uniparthenope.it

On the Second Anisotropic Cheeger Constant and Related Questions

We study the behavior of the second eigenfunction of the anisotropic p -Laplace operator

$$-Q_p u := -\operatorname{div} (F^{p-1}(\nabla u) F_\xi(\nabla u)),$$

as $p \rightarrow 1^+$, where F is a suitable smooth norm of \mathbb{R}^n . Moreover, for any regular set Ω , we define the second anisotropic Cheeger constant as

$$h_{2,F}(\Omega) := \inf \left\{ \max \left\{ \frac{P_F(E_1)}{|E_1|}, \frac{P_F(E_2)}{|E_2|} \right\}, E_1, E_2 \subset \Omega, E_1 \cap E_2 = \emptyset \right\},$$

where $P_F(E)$ is the anisotropic perimeter of E , and study the connection with the second eigenvalue of the anisotropic p -Laplacian. Finally, we study the twisted anisotropic q -Cheeger constant with a volume constraint.

Keywords: Nonlinear eigenvalue problems, second anisotropic Cheeger constant, second eigenfunctions of the p -Laplacian.

MSC: 47J10, 49Q20, 52A38.