

B. Ćurgus

Dept. of Mathematics, Western Washington University, Bellingham, U.S.A.
curgus@wwu.edu

K. Kołodziejczyk

Faculty of Pure and Applied Mathematics, University of Science and Technology, Wrocław,
Poland
krzysztof.kolodziejczyk@pwr.edu.pl

**Convex Interval Hull of Finite Sets in Real Linear Spaces: Extreme
Points and Unbounded Images**

Let S be a finite set in a real linear space and let \mathcal{J}_S be a family consisting of $|S|$ intervals in \mathbb{R} . In this paper we deal with a convex operator $\text{co}(S, \mathcal{J}_S)$ called the convex interval hull. This operator generalizes the familiar concepts of the convex hull, $\text{conv}(S)$, and the affine hull, $\text{aff}(S)$, of S . The set $\text{co}(S, \mathcal{J}_S)$ is a convex subset of the linear space and can be either bounded or unbounded, depending on the families \mathcal{J}_S . In this paper we apply $\text{co}(S, \mathcal{J}_S)$ to obtain unbounded images of a finite set S . As special images of $\text{co}(S, \mathcal{J}_S)$ for finite S we obtain such unbounded objects as: hyperplanes, cylinders, cones, penumbras and wedges. We also apply $\text{co}(S, \mathcal{J}_S)$ to study some properties of extreme points. In relation to $\text{co}(S, \mathcal{J}_S)$ we introduce the so-called extreme interval operator $\text{Eco}(S)$ and prove some analogues of the celebrated Minkowski-Krein-Milman's theorem.

Keywords: Convex set, cone, convex interval hull, extreme point, extreme interval operator, Minkowski-Krein-Milman property.

MSC: 52A05, 15A03, 14N20.