

C. Cosco

Université Dauphine, Paris, France
cosco@ceremade.dauphine.fr

S. Nakajima

Dept. of Mathematics, Meiji University, Tokyo, Japan
njima@meiji.ac.jp

F. Schweiger

(1) Weizmann Institute of Science, Rehovot, Israel
(2) Section de Mathématiques, Université de Genève, Switzerland
florian.schweiger@unige.ch

Asymptotics of the p -Capacity in the Critical Regime

We are interested in the asymptotics of the p -capacity between the origin and the set nB , where B is the boundary of the unit ball of the lattice \mathbb{Z}^d . The p -capacity is defined as the minimum of the Dirichlet energy associated with a discrete version of the p -Laplacian. This variational problem has arisen in particular in the study of large deviations for first passage percolation. For $p < d$, the p -capacity converges to some positive constant, while for $p > d$ the capacity vanishes polynomially fast. The present paper deals with the case $p = d$, for which we prove that the p -capacity vanishes as $c_d(\log n)^{-d+1}$ with an explicit constant c_d . Our proof relies on Thomson's principle for the p -capacity.

Keywords: p -Capacity, variational problem, first passage percolation.

MSC: 31C45; 31C20, 94C15, 60K35.