© 2024 Heldermann Verlag
Journal of Convex Analysis 31 (2024) 051-058
M. Lassak

Institute of Mathematics and Physics, University of Technology and Life Sciences, Bydgoszcz, Poland
lassak@pbs.edu.pl

The Centroid Banach-Mazur Distance between the Parallelogram and the Triangle

Let C and D be convex bodies in the Euclidean space E^{d}. We define the centroid Banach-Mazur distance $\delta_{B M}^{\mathrm{cen}}(C, D)$ similarly to the classic BanachMazur distance $\delta_{B M}(C, D)$, but with the extra requirement that the centroids of C and an affine image of D coincide. We prove that for the parallelogram P and the triangle T in E^{2} we have $\delta_{B M}^{\text {cen }}(P, T)=\frac{5}{2}$.

Keywords: Banach-Mazur distance, centroid Banach-Mazur distance, convex body, centroid, parallelogram, triangle.

MSC: 52A21; 46B20, 52A10.

