© 2024 Heldermann Verlag Journal of Convex Analysis 31 (2024) 051–058

M. Lassak

Institute of Mathematics and Physics, University of Technology and Life Sciences, Bydgoszcz, Poland lassak@pbs.edu.pl

The Centroid Banach-Mazur Distance between the Parallelogram and the Triangle

Let C and D be convex bodies in the Euclidean space E^d . We define the centroid Banach-Mazur distance $\delta_{BM}^{\text{cen}}(C, D)$ similarly to the classic Banach-Mazur distance $\delta_{BM}(C, D)$, but with the extra requirement that the centroids of C and an affine image of D coincide. We prove that for the parallelogram P and the triangle T in E^2 we have $\delta_{BM}^{\text{cen}}(P,T) = \frac{5}{2}$.

Keywords: Banach-Mazur distance, centroid Banach-Mazur distance, convex body, centroid, parallelogram, triangle.

MSC: 52A21; 46B20, 52A10.