© 2023 Heldermann Verlag Journal of Convex Analysis 30 (2023) 111–130

S. G. Kim

Dept. of Mathematics, Kyungpook National University, Daegu, Republic of Korea ${\tt sgk3170knu.ac.kr}$

C. Y. Lee

Dept. of Mathematics, Kyungpook National University, Daegu, Republic of Korea

U. Jeong

Dept. of Mathematics, Kyungpook National University, Daegu, Republic of Korea

The Norming Set of a Bilinear Form on R² with the Octagonal Norm

An element $(x_1, \ldots, x_n) \in E^n$ is called *norming point* of $T \in \mathcal{L}(^nE)$ if

$$||x_1|| = \cdots = ||x_n|| = 1$$
 and $|T(x_1, \dots, x_n)| = ||T||,$

where $\mathcal{L}(^{n}E)$ denotes the space of all continuous *n*-linear forms on *E*. For $T \in \mathcal{L}(^{n}E)$, we define

Norm $(T) = \{(x_1, \ldots, x_n) \in E^n : (x_1, \ldots, x_n) \text{ is a norming point of } T\}.$

Let $\mathbb{R}^2_{o(w)}$ denote \mathbb{R}^2 with the octagonal norm with weight $0 < w \neq 1$

 $||(x,y)||_{o(w)} = \max\{|x| + w|y|, |y| + w|x|\}.$

We classify Norm (T) for every $T \in \mathcal{L}({}^2\mathbb{R}^2_{o(w)})$ with weight $0 < w \neq 1$ in this paper.

Keywords: Norming points, bilinear forms.

MSC: 46A22.