© 2022 Heldermann Verlag Journal of Convex Analysis 29 (2022) 371–380

K. Mandal

Dept. of Mathematics, Jadav
pur University, Kolkata, West Bengal, India kalidas.mandal
140gmail.com $\,$

A. Bhanja

Dept. of Mathematics, Vivekan anda College Thakurpukur, Kolkata, West Bengal, India aniketbhanja
2190gmail.com $\,$

S. Bag

Dept. of Mathematics, Vivekananda College for Women, Barisha, Kolkata, West Bengal, India santanumath840gmail.com

K. Paul

Dept. of Mathematics, Jadav
pur University, Kolkata, West Bengal, India kalloldada@gmail.com

On the Numerical Range of Operators on some Special Banach Spaces

The numerical range of a bounded linear operator on a complex Banach space need not be convex unlike that on a Hilbert space. The aim of this paper is to study operators T on ℓ_p^2 for which the numerical range is convex. We also obtain a nice relation between V(T) and $V(T^t)$ considering $T \in \mathbb{L}(\ell_p^2)$ and $T^t \in \mathbb{L}(\ell_q^2)$, where T^t denotes the transpose of T and p and q are conjugate real numbers, i.e., $1 < p, q < \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$.

Keywords: Semi-inner-product, numerical range, convex set.

MSC: 47A12; 46A55.