© 2021 Heldermann Verlag Journal of Convex Analysis 28 (2021) 803–818

T. Banakh

I. Franko National University, Lviv, Ukraine and: J. Kochanowski University, Kielce, Poland t.o.banakh@gmail.com

S. Gabriyelyan

 $\label{eq:constraint} \begin{array}{l} \text{Department of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva, Israel \texttt{saak@math.bgu.ac.il} \end{array}$

Locally Convex Properties of Baire Type Function Spaces

For an infinite Tychonoff space X, a nonzero countable ordinal α and a locally convex space E over the field \mathbb{F} of real or complex numbers, we denote by $B_{\alpha}(X, E)$ the class of Baire- α functions from X to E. In terms of the space E we characterize the space $B_{\alpha}(X, E)$ satisfying various weak barrelledness conditions, (DF)-type properties, the Grothendieck property, or Dunford-Pettis type properties. We solve Banach-Mazur's separable quotient problem for $B_{\alpha}(X, E)$ in a strong form: $B_{\alpha}(X, E)$ contains a complemented subspace isomorphic to $\mathbb{F}^{\mathbb{N}}$. Applying our results to the case when X is metrizable and $E = \mathbb{R}$, we show that the space $B_{\alpha}(X) := B_{\alpha}(X, \mathbb{R})$ is Baire-like (and hence barrelled), has the Grothendieck property and the Dunford-Pettis property. Further, the space $B_{\alpha}(X)$ is (semi-)Montel iff it is (semi-)reflexive iff it is (quasi-)complete iff $B_{\alpha}(X) = \mathbb{R}^X$ (for $\alpha = 1$ the last equality is equivalent to X of being a Q-space).

Keywords: Baire type function spaces, Baire-like, weak barrelledness, Grothendieck property, Dunford-Pettis property, quasi-DF-space, semi-reflexive, semi-Montel.

MSC: 46A03; 46A08, 54C35.