© 2021 Heldermann Verlag Journal of Convex Analysis 28 (2021) 795–802

D. J. Farrell

Department of Mathematics, The University of Auckland, Auckland 1142, New Zealand

W. B. Moors

Department of Mathematics, The University of Auckland, Auckland 1142, New Zealand <code>w.moors@auckland.ac.nz</code>

An Application of the Generalised James' Weak Compactness Theorem

We provide a short proof of following theorem, due to Delbaen and Orihuela and independently, Pérez-Aros and Thibault. Let A be a nonempty closed and bounded convex subset of a Banach space $(X, \|\cdot\|)$ and let W be a nonempty weakly compact subset of $(X, \|\cdot\|)$. If we have

$$x_0^* \in \{x^* \in X^* : \sup_{a \in A} x^*(a) < 0\}$$
 and $\operatorname{argmax}(y^*|_A) \neq \emptyset$

for each $y^* \in \{x^* \in X^* : \sup_{a \in A} x^*(a) < 0 \text{ and } \sup_{w \in W} |(x^* - x_0^*)(w)| < 1\}$, then A is weakly compact.

Keywords: Weak compactness, James' weak compactness theorem.

MSC: 46B20; 46B26, 49A50, 49A51.