© 2021 Heldermann Verlag Journal of Convex Analysis 28 (2021) 725–728

G. Strang

Department of Mathematics, MIT, Cambridge, MA 02139, U.S.A. gilstrang@gmail.com

The Column-Row Factorization of a Matrix

The active ideas in linear algebra are often expressed by matrix factorizations: $S = Q\Lambda Q^{\mathrm{T}}$ for symmetric matrices (the spectral theorem) and $A = U\Sigma V^{\mathrm{T}}$ for all matrices (singular value decomposition). Far back near the beginning comes A = LU for successful elimination: Lower triangular times upper triangular. This paper is one step earlier, with bases in A = CR for the column space and row space of any matrix – and a proof that column rank = row rank. The echelon form of A and the pseudoinverse A^+ appear naturally. The "proofs" are mostly "observations".

Keywords: Matrix, factorizations, rank, echelon form.

MSC: 15A23