© 2021 Heldermann Verlag Journal of Convex Analysis 28 (2021) 197–202

A. Dehaj

Laboratory of Algebra, Analysis and Applications, Department of Mathematics and Computer Science, Faculty of Sciences Ben M'Sik, Hassan II University, Sidi Othman – Casablanca, Morocco

a.dehaj@gmail.com

M. Guessous

Laboratory of Algebra, Analysis and Applications, Department of Mathematics and Computer Science, Faculty of Sciences Ben M'Sik, Hassan II University, Sidi Othman – Casablanca, Morocco

 $\verb"guessousjssous@yahoo.fr"$

Permutation-Invariance in Komlós' Theorem for Hilbert-Space Valued Random Variables

The Komlós theorem states that we can extract a subsequence from every $L^1_{\mathbb{R}}$ bounded sequence of random variables, so that every further subsequence converges Cesàro a.e. to the same limit. The purpose of this paper is to prove that if \mathbb{H} is a Hilbert space, we can extract a subsequence from every $L^1_{\mathbb{H}}$ -bounded sequence, so that every permuted subsequence converges Cesàro a.e. in \mathbb{H} to the same limit.

Keywords: Bounded sequences, Cesaro-convergence, Hilbert space, Komlos theorem, permutation.

MSC: 28A20, 46B20.