© 2020 Heldermann Verlag Journal of Convex Analysis 27 (2020) 079–102

D. Azagra

Dep. de Análisis Matemático y Matemática Aplicada, Facultad Ciencias Matemáticas, Universidad Complutense, 28040 Madrid, Spain azagra@mat.ucm.es

C. Mudarra

Instituto de Ciencias Matemáticas, 28049 Madrid, Spain carlos.mudarra@icmat.es

Prescribing Tangent Hyperplanes to $C^{1,1}$ and $C^{1,\omega}$ Convex Hypersurfaces in Hilbert and Superreflexive Banach Spaces

Let X denote \mathbb{R}^n or, more generally, a Hilbert space. Given an arbitrary subset C of X and a collection \mathcal{H} of affine hyperplanes of X such that every $H \in \mathcal{H}$ passes through some point $x_H \in C$, and $C = \{x_H : H \in \mathcal{H}\}$, what conditions are necessary and sufficient for the existence of a $C^{1,1}$ convex hypersurface S in X such that H is tangent to S at x_H for every $H \in \mathcal{H}$? In this paper we give an answer to this question. We also provide solutions to similar problems for convex hypersurfaces of class $C^{1,\omega}$ in Hilbert spaces, and for convex hypersurfaces of class $C^{1,\omega}$ in Spaces having equivalent norms with moduli of smoothness of power type $1 + \alpha$, $\alpha \in (0, 1]$.

Keywords: Convex body, convex function, Whitney extension theorem, differentiability, signed distance function.

MSC: 6B05, 26B25, 52A05, 52A20.