© 2019 Heldermann Verlag Journal of Convex Analysis 26 (2019) 1125–1144

W. B. Moors

Department of Mathematics, The University of Auckland, Auckland 1142, New Zealand w.moors@auckland.ac.nz ${\tt w.moors@auckland.ac.nz}$

N. O. Tan

Department of Mathematics, The University of Auckland, Auckland 1142, New Zealand $\tt neset.tan@auckland.ac.nz$

An Abstract Variational Theorem

Let $(X, \|\cdot\|)$ be a Banach space and $f: X \to \mathbb{R} \cup \{\infty\}$ be a proper function. Then the *Fenchel conjugate of* f is the function $f^*: X^* \to \mathbb{R} \cup \{\infty\}$ defined by,

$$f^*(x^*) := \sup\{(x^* - f)(x) : x \in X\}.$$

In this article we will prove a theorem more general than the following.

Theorem: Let $f: X \to \mathbb{R} \cup \{\infty\}$ be a proper function on a Banach space $(X, \|\cdot\|)$. $\|$. If there is a nonempty open subset A of $\text{Dom}(f^*)$ such that $\operatorname{argmax}(x^* - f) \neq \emptyset$ for each $x^* \in A$, then there is a dense and G_{δ} subset R of A such that $(x^* - f): X \to \mathbb{R} \cup \{-\infty\}$ has a strong maximum for each $x^* \in R$. In addition, if $0 \in A$ and $0 < \varepsilon$ then there is an $x^* \in X^*$ with $\|x^*\| < \varepsilon$ such that $(x^* - f): X \to \mathbb{R} \cup \{-\infty\}$ has a strong maximum.

Keywords: Variational theorem, James' weak compactness theorem, convex analysis.

MSC: 46B20; 46B10, 46B50