© 2019 Heldermann Verlag Journal of Convex Analysis 26 (2019) 1071–1076

A. R. Alimov

Steklov Math. Institute, Russian Academy of Sciences, Moscow, Russia alexey.alimov-msu@yandex.ru

E. V. Shchepin Steklov Math. Institute, Russian Academy of Sciences, Moscow, Russia scepin@mi.ras.ru

Convexity of Suns in Tangent Directions

A direction d is called a tangent direction to the unit sphere S if the conditions $s \in S$ and $\operatorname{aff}(s+d)$ is a tangent line to the sphere S at s imply that $\operatorname{aff}(s+d)$ is a one-sided tangent to the sphere S, i.e., it is the limit of secant lines at the point s. A set M is called convex with respect to a direction d if $[x, y] \subset M$ whenever $x, y \in M$, $(y - x) \parallel d$. It is shown that in an arbitrary normed space an arbitrary sun (in particular, a boundedly compact Chebyshev set) is convex with respect to any tangent direction of the unit sphere.

Keywords: Sun, Chebyshev set, directional convexity.

MSC: 41A65, 52A05