© 2019 Heldermann Verlag Journal of Convex Analysis 26 (2019) 945–966

J.-P. Chancelier

Université Paris-Est, CERMICS - ENPC, 77455 Marne la Vallée 2, France

M. De Lara

Université Paris-Est, CERMICS - ENPC, 77455 Marne la Vallée 2, France delara@cermics.enpc.fr

Fenchel-Moreau Conjugation Inequalities with Three Couplings and Application to the Stochastic Bellman Equation

Given two couplings between "primal" and "dual" sets, we prove a general implication that relates an inequality involving "primal" sets to a reverse inequality involving the "dual" sets. More precisely, let be given two "primal" sets \mathbb{X} , \mathbb{Y} and two "dual" sets \mathbb{X}^{\sharp} , \mathbb{Y}^{\sharp} , together with two coupling functions $\mathbb{X} \stackrel{c}{\leftrightarrow} \mathbb{X}^{\sharp}$ and $\mathbb{Y} \stackrel{d}{\leftrightarrow} \mathbb{Y}^{\sharp}$. We define a new coupling c + d between the "primal" product set $\mathbb{X} \times \mathbb{Y}$ and the "dual" product set $\mathbb{X}^{\sharp} \times \mathbb{Y}^{\sharp}$.

Then, we consider any bivariate function $\mathcal{K} \colon \mathbb{X} \times \mathbb{Y} \to [-\infty, +\infty]$ and univariate functions $f \colon \mathbb{X} \to [-\infty, +\infty]$ and $g \colon \mathbb{Y} \to [-\infty, +\infty]$, all defined on the "primal" sets. We prove that

$$f(x) \geq \inf_{y \in \mathbb{Y}} \left(\mathcal{K}(x, y) \dotplus g(y) \right) \ \Rightarrow \ f^c(x^{\sharp}) \leq \inf_{y^{\sharp} \in \mathbb{Y}^{\sharp}} \left(\mathcal{K}^c \dot{+}^d(x^{\sharp}, y^{\sharp}) \dotplus g^{-d}(y^{\sharp}) \right),$$

where we stress that the Fenchel-Moreau conjugates f^c and g^{-d} are not necessarily taken with the same coupling.

We study the equality case. We display several applications. We provide a new formula for the Fenchel-Moreau conjugate of a generalized inf-convolution. We obtain formulas with partial Fenchel-Moreau conjugates. Finally, we consider the Bellman equation in stochastic dynamic programming and we provide a "Bellman-like" inequation for the Fenchel conjugates of the value functions.

Keywords: Fenchel-Moreau conjugacy, coupling, envelope function, generalized inf-convolution, Bellman equation.

MSC: 46N10, 47N10.