© 2019 Heldermann Verlag Journal of Convex Analysis 26 (2019) 593–603

S. Drapeau

Shanghai Jiao Tong University, School of Mathematical Sciences, and: China Academy of Financial Research, 211 West Huaihai Road, Shanghai, China sdrapeau@saif.sjtu.edu.cn

A. Jamneshan

Dept. of Mathematics and Statistics, University of Konstanz, 78464 Konstanz, Germany <code>asgar.jamneshan@uni-konstanz.de</code>

M. Kupper

Dept. of Mathematics and Statistics, University of Konstanz, 78464 Konstanz, Germany kupper@uni-konstanz.de

A Fenchel-Moreau Theorem for \overline{L}^0 -Valued Functions

We establish a Fenchel-Moreau type theorem for proper convex functions $f: X \to \overline{L}^0$, where $(X, Y, \langle \cdot, \cdot \rangle)$ is a dual pair of Banach spaces and \overline{L}^0 is the space of all extended real-valued functions on a σ -finite measure space. We introduce the concept of stable lower semi-continuity which is shown to be equivalent to the existence of a dual representation

$$f(x) = \sup_{y \in L^0(Y)} \left\{ \langle x, y \rangle - f^*(y) \right\}, \quad x \in X,$$

where $L^0(Y)$ is the space of all strongly measurable functions with values in Y, and $\langle \cdot, \cdot \rangle$ is understood pointwise almost everywhere. The proof is based on a conditional extension result and conditional functional analysis.

Keywords: Fenchel-Moreau theorem, vector duality, semi-continuous extension, conditional functional analysis.

MSC: 46A20, 03C90, 46B22