© 2018 Heldermann Verlag Journal of Convex Analysis 25 (2018) 1335–1344

J. Orihuela

Dep. de Matemáticas, Universidad de Murcia, 30100 Espinardo-Murcia, Spain ${\tt joseori@um.es}$

Conic James' Compactness Theorem

The following results is proved:

Let A be a convex bounded non weakly relatively compact subset of a Banach space E. We consider a convex weakly compact subset D of E which does not contain the origin.

Then there is a sequence $\{x_n^*\}_{n\geq 1}$ in B_{E^*} and $g_0^* \in co_{\sigma}\{x_n^* : n \geq 1\}$ such that for all $h \in \ell_{\infty}(A)$ satisfying that for all $a \in A$,

$$\liminf_{n \ge 1} x_n^*(a) \le h(a) \le \limsup_{n \ge 1} x_n^*(a),$$

we have that $g_0^* - h$ does not attain its supremum on A and $(g_0^* - h)(d) > 0$ for every $d \in D$.

Keywords: James' compactness theorem, weakly compact set.

MSC: 46A50, 46B50