© 2018 Heldermann Verlag Journal of Convex Analysis 25 (2018) 181–199

J. Kakol

Faculty of Mathematics and Informatics, A. Mickiewicz University, 61-614 Poznan, Poland kakol@amu.edu.pl

A. Kubzdela

Institute of Civil Engineering, University of Technology, Ul. Piotrowo 5, 61-138 Poznan, Poland

albert.kubzdela@put.poznan.pl

C. Perez-Garcia

Dept. of Mathematics, Faculty of Sciences, Universidad de Cantabria, Avda. de los Castros s/n, 39071 Santander, Spain perezmc@unican.es

On Countable Tightness and the Lindelöf Property in Non-Archimedean Banach Spaces

Let \mathbb{K} be a non-archimedean valued field and let E be a non-archimedean Banach space over \mathbb{K} . By E_w we denote the space E equipped with its weak topology and by $E_{w^*}^*$ the dual space E^* equipped with its weak* topology. Several results about countable tightness and the Lindelöf property for E_w and $E_{w^*}^*$ are provided. A key point is to prove that for a large class of infinite-dimensional polar Banach spaces E, countable tightness of E_w or $E_{w^*}^*$ implies separability of \mathbb{K} . As a consequence we obtain the following two characterizations of the field \mathbb{K} :

(a) A non-archimedean valued field \mathbb{K} is locally compact if and only if for every Banach space E over \mathbb{K} the space E_w has countable tightness if and only if for every Banach space E over \mathbb{K} the space $E_{w^*}^*$ has the Lindelöf property.

(b) A non-archimedean valued separable field \mathbb{K} is spherically complete if and only if every Banach space E over \mathbb{K} for which E_w has the Lindelöf property must be separable if and only if every Banach space E over \mathbb{K} for which $E_{w^*}^*$ has countable tightness must be separable.

Both results show how essentially different are non-archimedean counterparts from the "classical" corresponding theorems for Banach spaces over the real or complex field.

Keywords: Non-archimedean Banach spaces, weak topology, Lindelöf property, countable tightness.

MSC: 46S10, 54D20