© 2014 Heldermann Verlag Journal of Convex Analysis 21 (2014) 571–580

G. Tinaztepe

Vocational School of Technical Sciences, Akdeniz University, Dumlupinar Boulevard, 07058 Campus Antalya, Turkey gtinaztepe@akdeniz.edu.tr

I. Yesilce

Faculty of Science and Letters, Mersin University, Ciftlikkoy Campus, 33343 Mersin, Turkey <code>ilknuryesilce@gmail.com</code>

G. Adilov

Faculty of Education, Akdeniz University, Dumlupinar Boulevard, 07058 Campus Antalya, Turkey gabiladilov@gmail.com

Separation of B⁻¹–Convex Sets by B⁻¹–Measurable Maps

A subset A of \mathbb{R}^{n}_{++} is B^{-1} -convex if for all $x_1, x_2 \in A$ and all $t \geq 1$ one has $tx_1 \wedge x_2 \in A$. These sets were first investigated in papers of G. Adilov and I. Yesilce ["B⁻¹-convex sets and B⁻¹-measurable maps", Numerical Functional Analysis and Optimization 33(2) (2012) 131–141; "On Generalization of the Concept of Convexity", Hacettepe Journal of Mathematics and Statistics 41(5) (2012) 723–730], and of W. Briec and Q. B. Liang ["On Some Semilattice Structures for Production Technologies", European Journal of Operational Research 215 (2011) 740–749].

In this paper, we establish separation and a Hahn-Banach-like Theorem for B^{-1} -convex sets.

Keywords: B-convexity, half spaces, gauges, co-gauges, separation, B-measurable maps.

MSC: 52A30, 52A01, 52A41, 26B25