© 2012 Heldermann Verlag Journal of Convex Analysis 19 (2012) 837–852

V. Barbu

Dept. of Mathematics, University "Al. J. Cuza", 6600 Iasi, Romania vb41@uaic.ro

Y. Guo

Dept. of Mathematics, University of Nebraska, Lincoln, NE 68588, U.S.A. s-yguo2@math.unl.edu

M. A. Rammaha

Dept. of Mathematics, University of Nebraska, Lincoln, NE 68588, U.S.A. mrammaha1@math.unl.edu

D. Toundykov

Dept. of Mathematics, University of Nebraska, Lincoln, NE 68588, U.S.A. dtoundykov2@unl.edu

Convex Integrals on Sobolev Spaces

Let $j_0, j_1 : \mathbb{R} \mapsto [0, \infty)$ denote convex functions vanishing at the origin, and let Ω be a bounded domain in \mathbb{R}^3 with sufficiently smooth boundary Γ . This paper is devoted to the study of the convex functional

$$J(u) = \int_{\Omega} j_0(u) d\Omega + \int_{\Gamma} j_1(\gamma u) d\Gamma$$

on the Sobolev space $H^1(\Omega)$. We describe the convex conjugate J^* and the subdifferential ∂J . It is shown that the action of ∂J coincides pointwise a.e. in Ω with $\partial j_0(u(x))$, and a.e on Γ with $\partial j_1(u(x))$. These conclusions are non-trivial because, although they have been known for the subdifferentials of the functionals $J_0(u) = \int_{\Omega} j_0(u) d\Omega$ and $J_1(u) = \int_{\Gamma} j_1(\gamma u) d\Gamma$, the lack of any growth restrictions on j_0 and j_1 makes the sufficient domain condition for the sum of two maximal monotone operators ∂J_0 and ∂J_1 infeasible to verify directly. The presented theorems extend the results of H. Brézis [Intégrales convexes dans les espaces de Sobolev, Proc. Int. Symp. Partial Diff. Equations and the Geometry of Normed Linear Spaces, Jerusalem 1972, vol. 13 (1972) 9–23 (1973); MR 0341077 (49#5827)] and fundamentally complement the emerging research literature addressing supercritical damping and sources in hyperbolic PDE's. These findings rigorously confirm that a combination of supercritical interior and boundary damping feedbacks can be modeled by the subdifferential of a suitable convex functional on the state space.