© 2011 Heldermann Verlag Journal of Convex Analysis 18 (2011) 949–981

A. Lemenant

Université Paris Diderot - Paris 7, U.F.R de Mathématiques, Site Chevaleret Case 7012, 175, rue du Chevaleret, 75205 Paris Cedex 13, France lemenant@ann.jussieu.fr

About the Regularity of Average Distance Minimizers in \mathbb{R}^2

We focus on the following irrigation problem introduced by G. Buttazzo, E. Oudet and E. Stepanov [Optimal transportation problems with free Dirichlet regions, in: Variational Methods for Discontinuous Structures, Progr. Nonlinear Differential Equations Appl. 51, Birkhäuser, Basel (2002) 41–65]:

$$\min \mathcal{F}(\Sigma) := \int_{\Omega} dist(x, \Sigma) \, \mathrm{d}\mu(x),$$

where Ω is an open subset of \mathbb{R}^2 , μ is a probability measure and where the minimum is taken over all the sets $\Sigma \subset \Omega$ such that Σ is compact, connected, and $\mathcal{H}^1(\Sigma) \leq \alpha_0$ for a given positive constant α_0 . In this paper we seek for some conditions to find in Σ some pieces of C^1 (or more) regular curves. We prove that it is the case in the ball B when $\Sigma \cap B$ contains no corner points. More generally we prove that the Left and Right tangents half lines of Σ (that exist everywhere out of endpoints and triple points) are semicontinuous. We also discuss how the regularity is linked with the pull back measure $\psi := k \sharp \mu$ where k is the projection on Σ . In particular $\Sigma \cap B$ is $C^{1,\alpha}$ when ψ is regular with respect to \mathcal{H}^1 with density in a certain L^p . We also prove that Σ is locally a Lipschitz graph away from triple points and endpoints, and that the mean curvature of Σ is a measure that is explicited in terms of measure ψ .