© 2010 Heldermann Verlag Journal of Convex Analysis 17 (2010) 765–780

B. Baji

Dép. de Mathématiques, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier 05, France baji190free.fr

A. Cabot

Dép. de Mathématiques, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier 05, France acabot@math.univ-montp2.fr

On some Curvature-Dependent Steplength for the Gradient Method

The aim of this paper is to show the interest of taking into account the notion of curvature in gradient methods. More precisely, given a Hilbert space H and a strictly convex function $\phi : H \to \mathbb{R}$ of class C^2 , we consider the following algorithm

(*)
$$x_{n+1} = x_n - \lambda_n \nabla \phi(x_n)$$
, with $\lambda_n = \frac{|\nabla \phi(x_n)|^2}{\langle \nabla^2 \phi(x_n), \nabla \phi(x_n), \nabla \phi(x_n) \rangle}$

We obtain results of linear convergence for the above algorithm, even without strong convexity. Some variants of (\star) are also considered, with different expressions of the curvature-dependent steplength λ_n . A large part of the paper is devoted to the study of an implicit version of (\star) , falling into the field of the proximal point iteration. All these algorithms are clearly related to the Barzilai-Borwein method and numerical illustrations at the end of the paper allow to compare these different schemes.

Keywords: Unconstrained convex optimization, steepest descent, gradient method, proximal point algorithm, Barzilai-Borwein stepsize.

MSC: 65K10, 90C25, 49M25