© 2002 Heldermann Verlag Journal of Convex Analysis 09 (2002) 117–138

M. Bildhauer

Fachrichtung Mathematik, Universität des Saarlandes, 66041 Saarbrücken, Germany bibi@math.uni-sb.de

A Priori Gradient Estimates for Bounded Generalized Solutions of a Class of Variational Problems with Linear Growth

Given an integrand f of linear growth and assuming an ellipticity condition of the form

 $D^2 f(Z)(Y,Y) \geq c \big(1+|Z|^2\big)^{-\frac{\mu}{2}} |Y|^2, \quad 1<\mu\leq 3\,,$

we consider the variational problem $J[w] = \int_{\Omega} f(\nabla w) dx \to \min$ among mappings $w: \mathbb{R}^n \supset \Omega \to \mathbb{R}^N$ with prescribed Dirichlet boundary data. If we impose some boundedness condition, then the existence of a generalized minimizer u^* is proved such that $\int_{\Omega'} |\nabla u^*| \log^2(1 + |\nabla u^*|^2) dx \leq c(\Omega')$ for any $\Omega' \Subset \Omega$. Here the limit case $\mu = 3$ is included and we obtain a clear interpretation of the particular solution u^* . Moreover, if $\mu < 3$ and if $f(Z) = g(|Z|^2)$ is assumed in the vector-valued case, then we show local $C^{1,\alpha}$ -regularity and uniqueness up to a constant of generalized minimizers. These results substantially improve earlier contributions of the author and M. Fuchs [Rend. Mat. Appl., VII. Ser. 22 (2002) 249–274], where only the case of exponents $1 < \mu < 1 + 2/n$ could be considered.

Keywords: Linear growth, minimizers, regularity, duality, BV-functions.

MSC: 49N60; 49N15, 49M29