
CHAPTER 1

Introduction

Statistics is concerned with information. This is what the subject of this book
is all about. A problem in statistics begins with an unknown parameter θ, i.e. a
variable whose exact value is not known. In order to generate information about
θ we perform a statistical experiment E , which generates data x. The problem is
then to extract the maximum information about the unknown parameter θ from
the experiment E and the data x. This is called statistical inference. But what
is this information? And how is the statistical inference performed? Different
competing schools of thought have developed over the course of time. The most
popular ones are Bayesian statistics, Neyman-Pearson theory and Fisher theory
and its different variants. Although these schools seem to be irreconcilable, they
agree to some extent on the formal elements needed for statistical inference.

To start with, we have to ask how an experiment E is described. There exists
a common mathematical framework widely used in statistics for the notion of
a statistical experiment: the set X, the sample space, is the set of all possible
outcomes (samples) of the experiment. The set Θ, the parameter space, is the set
of all possible values for the unknown parameter θ. For the sake of simplicity we
assume X and Θ to be finite. Finally, pθ(x) is a family of probability measures
on the sample space X, indexed over all possible values θ ∈ Θ.

In the Bayesian school a prior probability distribution p0(θ) over the parame-
ter space Θ is further assumed to be given. The measure pθ(x) is then interpreted
as a conditional probability and written as p(x|θ) to emphasize this point of view.
The whole setup can then be summarized in the joint probability distribution

p(x, θ) = p(x|θ)p0(θ).

Then the experiment is performed and data x obtained. The information about
the unknown parameter θ can be summarized by the conditional probability of θ
given x,

p(θ|x) = c · p(x|θ)p0(θ),

where c is a normalization constant given by

c−1 = p(x) =
∑

θ∈Θ

p(x|θ)p0(θ).

This is Bayes’ theorem. This is a clear and neat approach. The only problem
is that there are situations where it is difficult to assume that a prior distribu-
tion p0(θ) is known. In particular there might be complete ignorance about θ.
Bayesians then usually assume a uniform distribution over Θ. But this is rather a

1
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default assumption, which replaces ignorance. Also, if Θ is infinite such a uniform
distribution does not exist. Finally, if the goal is to infer about some other pa-
rameter λ = g(θ), where the function g is known, then a uniform distribution over
θ does not, in general, transform into a uniform distribution over λ. So there are
different ways to represent ignorance by probability distributions, and it is by no
means clear which is the “correct” one. These are a few of the objections against
Bayesian inference. This is why other schools of statistical inference prefer to
avoid the use of prior distributions.

As an alternative, the likelihood principle [1] states that all the statistical
information is contained in the likelihood function

l(θ) = pθ(x),

where on the right hand side x is the observed data which is fixed now. See
[2] for a discussion of the likelihood paradigm. Here no prior distribution is
used. In fact, it is not clear whether and how prior information can be added in
this framework. However, the likelihood principle is related to Fisher’s concept
of fiducial distribution through the notions of sufficient and ancillary statistics.
Many controversies arose out of these concepts and we do not want to go into
the details of these discussions. See Hampel [3] for a recent perspective on the
fiducial argument and fiducial probabilities.

However, we claim and show that the likelihood function alone cannot, in
general, be considered to carry the full statistical information. Yet, we are still
interested in inference methods which do not necessarily rely on a prior distribu-
tion on the unknown parameter. As in the Bayesian approach and Fisher’s fiducial
inference we want to reason towards “posterior” probability statements for the
unknown parameter. But unlike Fisher’s fiducial inference and unlike Neyman-
Pearson theory, we want to integrate prior information into the inference, if it is
available. More generally, we want to integrate any additional information that is
available. Also unlike Bayesian inference, we want to integrate prior information
which is not necessarily given in the form of a prior probability distribution. We
claim that this is possible with an approach containing Bayesian inference as a
special case and which reproduces Fisher’s fiducial distributions, which get a clear
meaning in the theory developed in this book.

We propose to describe statistical experiments through functional models,
which define how data x is generated from the unknown parameter and some
stochastic elements. The use of functional models is of course in itself nothing
new. Dawid, Stone, and Bunke, among others, have used this type of models to
explain fiducial inference [4, 5]. Another author, Fraser, based his approach of
inference on structural models, a variant of functional models [6]. For example,
least squares methods of regression analysis and Kalman filtering are based on
functional models. However, our use of functional models is different: we base
the inference from functional models and related observed data on the principle
of assumption-based reasoning. This allows us to make “probabilistic” statements
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about the unknown parameter that have a clear meaning. In addition, our ap-
proach is not limited to the special class of invertible functional models, which
have been exclusively considered in the literature so far (except [7, 8]). The
approach presented in this book is much more general.

The benefits of assumption-based reasoning based on functional models are
multiple:

(1) Like Bayesian inference, the reasoning is towards posterior probabilistic
information about the unknown parameter, but without the necessity of
a prior probability distribution.

(2) The method allows the inclusion of prior or otherwise additional informa-
tion about the unknown parameter, if available. While this information
can be given by a prior probability distribution, other and more general
forms of information are possible.

(3) Assumption-based inference on functional models subsumes both Bay-
esian and fiducial inference as special cases.

(4) Although unknown parameters are not considered as random variables,
which they are definitely not, the approach gives a clear meaning to
probabilistic statements about the unknown parameter in the form of
probabilities of provability or derivability of hypotheses about the pa-
rameter.

Probabilistic assumption-based reasoning has been used by Pearl [9] to ex-
plain belief functions in the sense of Dempster-Shafer theory [10] in a probabilistic
framework. This kind of reasoning has been developed so far especially in the
context of propositional logic [11, 7, 12]. A first discussion of its application to
statistical problems, especially to inference in linear systems with normal distur-
bances, is given in [8].

In a series of important papers Arthur Dempster generalized Bayesian infer-
ence and proposed new methods for reasoning towards posterior distributions
based on samples [13, 14, 15, 16]. The goal was to show that an inference in the
spirit of Bayesian inference is also possible without a prior distribution. In this
way, the approach of Fisher based on fiducial probabilities and Bayes’ approach
would be reconciled as special cases of a unifying formalism. Fisher’s approach
corresponds to complete ignorance about the parameter before sampling, whereas
Bayes’ inference already assumes a complete prior information. In Dempster’s
approach a whole spectrum of intermediate prior information between these two
extremes is available. Our method is closely related to this work, but with an al-
ternative, new look at the underlying formalism. Dempster introduced lower and
upper probabilities on hypotheses about the unknown parameter. In assumption-
based reasoning, the lower probability becomes the probability of derivability of a
hypothesis and the upper probability becomes the probability of non-derivability
of the negation of the hypothesis, where derivability is investigated from the given
functional model and the data.

Dempster’s method of upper and lower probabilities was the motivation for G.
Shafer to develop a mathematical theory of evidence [10]. This became the basic



4 1. INTRODUCTION

source for the development of the so-called Dempster-Shafer theory of evidence.
However, Shafer considered belief as an epistemological measure of uncertainty.
Despite the formal similarity of the resulting statements, this interpretation is
quite different from the interpretation of statements coming from probabilistic
assumption-based reasoning. Nevertheless, Shafer also discussed statistical infer-
ence using evidence theory [17]. Another author, P. Smets, studied statistical
inference based on belief functions with yet another, non probabilistic, semantics
[18, 19, 20, 21].

In the first part of this book we examine discrete functional models, where
both the sample space and the parameter space are finite sets. This simple case
of discrete models is used to present the basic ideas of assumption-based inference
in a form which is unhampered with technical difficulties.

In the case of discrete models, the theory can be given an elegant form based
on the theory of hints [7, 22]. This form emphasizes that statistical inference is
concerned with the combination of several pieces of information. The combined
information is then focussed to the relevant aspects or questions. This gives an
algebraic flavor to the inference process (see Chapter 4). This perspective also
shows that assumption-based inference very naturally leads to familiar concepts
in the Dempster-Shafer theory of evidence [10]. It also gives a clear semantics to
the classical notion of likelihood function and clarifies its true place and role in
the field of statistical inference. In particular, it will be shown that the likelihood
function does not, in general, represent the entire information in a statistical
experiment. However, in some special situations, it does represent the entire
information. A necessary and sufficient condition for this to happen will be
presented (Section 3.4).

The first part also discusses how additional information coming from outside
the experiment or from other experiments can be integrated into the inference
process. This includes the Bayesian case, where prior information is assumed to
be given in the form of a probability distribution on the unknown parameter.
It will be shown that, in general, prior ignorance about the parameter cannot
be represented by a uniform distribution over the parameter space (Section 3.3).
Again, there are particular situations where prior ignorance can safely be repre-
sented by a uniform distribution. It will be shown that this is the case when the
functional model is invertible (Section 3.4).

Finally the question of how to decide which hypotheses are credible in view
of the available information is addressed in Chapter 5. A simple rule called the
α-rule is proposed and its properties are examined. In particular, the risks of er-
rors in accepting or refuting hypotheses are elucidated. An important feature of
assumption-based inference is to consider that it is not reasonable to require that
a hypothesis must always be accepted or rejected. Note that this point of view is
also shared by the Dempster-Shafer theory. In some cases the decision must be
left open. For example, in the extreme case of total ignorance, it does not make
sense to accept or reject a hypothesis because there is simply not enough infor-
mation to decide. This leads to the question of how does the procedure specified
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by the α-rule compare to the classical Neyman-Pearson tests theory. This is dis-
cussed in Section 5.2. In particular, the conceptual difference between the seller’s
position underlying Neyman-Pearson’s tests theory, which controls average error
probabilities over the whole sample space (the operational characteristics of the
test), and the user’s position, which is to control the errors given the observed
sample, is discussed. Assumption-based reasoning, like Bayesian inference, takes
the second position. Nevertheless, it is shown that in some cases the α-rule coin-
cides with most powerful Neyman-Pearson tests. The general consistency of the
α-rule is also proved. The difference between the seller’s and buyer’s position has
also been discussed by Hacking in terms of “before-trial betting” and “after-trial
betting” [23].

One must be careful in generalizing the results from the discrete to the contin-
uous case. Therefore, in the second part of the book we treat several variants of
continuous models. For these models the theory is far less complete than for dis-
crete models. For this reason, part II concentrates on assumption-based inference
in invertible models only. Nevertheless, this is already sufficient to review and
clarify several results and difficulties of Fisher’s fiducial theory and the likelihood
principle. In the same spirit, this also permits to examine the role of improper
priors in Bayesian inference. In fact, they get a clear meaning as elements of the
Theory of Hints and the Dempster-Shafer Theory (Section 9.2).

In Chapter 7 the basic cases of simple and partitionable models are presented.
The concept of partitionable models is due to Dawid, Stone and Bunke [4, 5]. In
both cases fiducial probability measures on the parameter space can be deduced.
These are particular support functions in the sense of the theory of hints, or par-
ticular belief functions in the sense of the Dempster-Shafer theory of evidence.
Important special cases of partitionable models are linear and structural models.
The latter concept is due to Fraser [6, 24]. These cases are examined in Chap-
ter 8. Structural models lead to reduced models and sometimes sufficient reduced
models. It is conjectured that the assumption-based concept of sufficiency is iden-
tical to Fisher’s classical concept (Section 9.1). This is verified in some examples,
but not formally proved in general.

As in the discrete case, adding external information to the inference is easily
possible (Section 9.2). In particular, different forms of prior knowledge, like for
example total ignorance, restriction of the parameter to a subset of its space,
uniform or other proper or improper prior densities can be integrated into the
assumption-based inference. This clarifies greatly the role of proper and improper
Bayesian priors, as well as other forms of additional information.

As in discrete models, it may be necessary to select hypotheses. The α-
rule is again proposed (Chapter 10). In particular this leads to (1 − α)-fiducial
intervals, which are shown to be different from classical confidence intervals.
Like classical statistical tests, the latter are concepts developed from a seller’s
position. They guarantee overall error probabilities. Fiducial intervals on the
other hand guarantee error probabilities given the observed sample, which reflects
the user’s position. But again in some cases the two concepts coincide and they



6 1. INTRODUCTION

are closely related to the notion of sufficiency. It must be stressed, however, that
the relations between assumption-based decision making and classical statistical
decision making procedures (tests, confidence intervals, estimators) are far from
being satisfactorily clarified. Much more research is needed in this direction.

The case of linear models, especially with Gaussian disturbances, is particu-
larly important from a practical point of view. Therefore, the third part of the
book is devoted to this subject. As an introduction, a simple economic model bor-
rowed from Pearl [25] is discussed in Chapter 12. Then linear systems in general
are treated (Chapter 13). But as is to be expected, the most interesting results
are obtained for Gaussian disturbances (Chapter 14). As in the discrete case, it
is possible to represent the information carried by linear systems with Gaussian
disturbances by (Gaussian) hints (Chapter 15). This stresses once again the in-
formation aspect of statistical models and observations. Furthermore, as in the
discrete case, Gaussian hints induce an algebraic structure which captures the
operations of combining and focussing of information (Chapter 16). This struc-
ture is an instance of a valuation algebra [26], [27], which is a particular case of a
more general algebraic theory providing a framework for computing with pieces of
information [28]. This is illustrated by the famous Kalman filter (Section 16.5).
A similar perspective on the Kalman filter has also been proposed by Dempster
[29], [30]. The idea of normal belief functions presented in these papers is further
developed in [31] and [32]. Normal belief functions are also called Gaussian belief
functions or linear belief functions. An application of these functions in the field
of finance is given in [33]. We also note that a method for analyzing dynamical
systems with stochastic disturbances or with unknown but bounded disturbances
is presented in [34]

As a final remark we would like to indicate that probabilistic assumption-
based reasoning, as discussed in this book in relation to statistical inference, is
also successfully applied in artificial intelligence, where it leads to a new way of
combining logic with probability [35, 12]. Assumption-based reasoning provides
a generic approach to reasoning under uncertainty, combining the two classical
theories of inference, probability and logic [28]. In fact, this approach is not so
new after all since traces of it can already be found in the famous Ars Conjectandi
of Jakob Bernoulli [36].
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Discrete Models





CHAPTER 2

Inference with Functional Models

2.1. Introduction

An experiment E is usually described in statistics by the sample space X, the
set of all possible outcomes of the experiment, the set Θ, the parameter space, the
set of all possible values of an unknown parameter θ. Finally a parametric family
of probability measures pθ, θ ∈ Θ, on the sample space X is specified. When the
experiment E is performed, an outcome x ∈ X is obtained or observed. This is the
data. From the data x and the description of the experiment E by the probability
measures pθ inference about the unknown parameter θ is attempted. Classically,
this usually amounts to constructing an estimator or a confidence interval for the
unknown parameter θ, or else to make a test on a pair of alternative hypotheses
H0 and H1 about the parameter θ. Estimators, confidence intervals and test
procedures are selected on the basis of the considerations of possible errors, trying
to minimize somehow these errors. That is, statistical procedures are selected on
the basis of their operational characteristics, i.e. on the probabilistic description
of their average performances over the possible samples. The emphasis is on the
average behavior of procedures. Little or nothing is known then on the behavior
of the procedure in the individual case of an actual data x.

Bayesian statistics is different. Here, based on a prior probability distribu-
tion, the statistical model pθ and the data x is used to determine a posterior
distribution p(θ|x) of the unknown parameter θ, using Bayes’ theorem. In this
approach probabilistic statements about the unknown parameter can be made in
the individual case of an actual data x. So emphasis is not on the average behav-
ior of statistical procedures, but on the inference in each individual case. From
the point of view of a user (a buyer) of statistical procedures, this is preferable
because the risks taken in making decisions based on the inference are known in
the individual case, and not only in the average.

The critical point however in Bayesian statistics is that a prior distribution
must be used. This can be justified in the framework of a subjective probability
theory. Nevertheless, in many practical cases it would be preferable to avoid the
assumption of a prior distribution because there is no prior knowledge about the
unknown parameter. But still it is desirable to make probabilistic statements
about θ in the individual case of the actual data x. This has been attempted
by Fisher [37] with the concept of fiducial probability. This subject was the
object of many controversies. The meaning of fiducial probability itself was not
altogether clear. Further, it is not always clear how to obtain these fiducial
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probabilities, and several apparent paradoxes have been reported. The basic
element used to obtain fiducial probabilities is the likelihood function, and it is
supposed that this function contains all information that can be extracted from a
statistical experiment. We claim that this is false in general, that it is the source
of many difficulties and also the source of the problem of properly interpreting
fiducial probabilities. Our claim is that we need functional models to properly
deduce fiducial probabilities and that, in general, these models are not uniquely
determined by likelihood functions.

The use of functional models for fiducial inference is not new [6, 4, 5]. But
these authors used only a particular class of functional models, i.e. those which
we call invertible (see Section 3.4 for the definition). So, although invertible mod-
els are important, they do not cover all cases. The use of non-invertible models,
on the other hand, introduces the new problem that only bounds for “fiducial”
probabilities can be obtained [13, 14, 15, 16]. We reconsider Dempster’s ap-
proach using assumption-based reasoning to give a clear meaning to probabilistic
statements about the unknown parameter in the case of individual, actual data x,
i.e. fiducial probabilities, in all cases. In this way, a unified approach to statistical
inference, including Fisher’s fiducial method and Bayes’ approach as special cases,
is obtained. This method reproduces many well known results but also leads to
new insights and methods. In particular, it clarifies the relations between Fisher’s
approach and Bayes’ statistics, especially the role of priors, including improper
priors (in particular in the continuous case). It also puts the likelihood function
into its proper place and shows in which cases this function really contains the
whole statistical information.

We introduce assumption-based reasoning with functional model in the case
when both the sample space X as well as the parameter space Θ are finite. This
allows the development of an elementary and elegant complete theory of statistical
inference. However, care must be exercised in generalizing this elementary theory
to more general cases of infinite sample spaces or infinite parameter spaces. These
more general situations are discussed in the next part of the book.

2.2. Functional Models

Functional models describe how data x is generated from a parameter θ and
some random element, designated by ω. We assume that the random element ω
comes from some set Ω, which is also supposed to be finite. Let then f be a given
function f : Θ× Ω → X such that

x = f(θ, ω).

So, if a parameter value θ ∈ Θ is given and a random element ω ∈ Ω is selected,
then data x is uniquely determined by the function f . In this sense, a functional
model describes the process of data generation. We assume not only that f is
given, but also that a probability measure P on Ω is known. This probability
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measure is given by the probabilities p(ω) for all ω ∈ Ω and of course,

p(ω) > 0, for all ω ∈ Ω,
∑
ω∈Ω

p(ω) = 1.

We stress that these probabilities do not depend on θ. These elements, the
function f and the probabilities p constitute a functional model for a statistical
experiment E .

Note that, if we assume a parameter θ, then, from the probabilities p, we can
compute the probabilities for the data x,

pθ(x) =
∑

ω:x=f(θ,ω)

p(ω).

Hence, a functional model induces a parametric family of probability measures
on the sample space X, an object which is usually assumed a priori in modeling
statistical experiments. We emphasize however that different functional mod-
els may induce the same parametric family pθ(x) of probability measures. So,
functional models contain more information than the family pθ(x).

Example 2.1 (A simple coin). Consider a fair coin with faces designated by 1
and 2. Suppose that there are only two possible cases: either face 1 carries heads
and face 2 tails (case designated by parameter θ0), or both faces carry heads (case
designated by parameter θ1). Thus we have Θ = {θ0, θ1}. The observed outcome
x of the experiment E consisting in throwing the coin once is either heads or tails.
This means that X = {heads, tails}. The chance element ω finally is simply the
face 1 or 2 turning up, Ω = {1, 2}, with p(1) = p(2) = 1/2. The functional model
is then completed by the function f defined as follows:

x =





heads if θ = θ0, and ω = 1,
heads if θ = θ1,
tails if θ = θ0, and ω = 2.

This functional model induces the following statistical specification:

pθ0(heads) = pθ0(tails) =
1

2
,

pθ1(heads) = 1, pθ1(tails) = 0.

4
Example 2.2 (An urn model). Suppose an urn contains N balls numbered

from 1 to N . The first θ balls are white, the rest is black, 0 ≤ θ ≤ N . The
experiment E consists of drawing one ball from the urn and observing its color.
The unknown parameter is θ. Then we have X = {black, white} and Θ =
{0, 1, . . . , N}. The random element is the number of the ball drawn, thus Ω =
{1, . . . , N}, and we assume that p(ω) = 1/N for all ω. The functional model is
then completed by

x =

{
white if ω ≤ θ,
black if ω > θ.
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The corresponding family of probabilities pθ(x) is

pθ(white) =
θ

N
, pθ(black) = 1− θ

N
.

Of course in this example, like the first one, not much information can be
obtained from a single draw. The experiment must be repeated, either with
or without replacement of the ball drawn. In the first case, with n draws, let
x = (x1, . . . , xn) ∈ Xn and ω = {ω1, . . . , ωn) ∈ Ωn with p(ω) = 1/Nn. Define
then x = f(θ, ω) component-wise for i = 1, . . . , n by

xi =

{
white if ωi ≤ θ,
black if ωi > θ.

This is then the functional model for n draws with replacement. 4
Example 2.3 (A sensor model). Consider a sensor which should detect the

presence of some hazardous material like smoke, gas, water, etc. Let θ1 denote
the presence of the hazardous material and θ0 its absence. So Θ = {θ0, θ1}.
The chance element ω comes from the possible failure of the sensor to operate
properly. So the sensor is either intact (i) or faulty (f), so that Ω = {i, f}. It is
assumed that probabilities of these two possible states are known to be p(i) = p
and p(f) = 1−p. Since the sensor may produce the alarm (a) or remain silent (s),
the set of possible observations is X = {a, s}. Furthermore, it is supposed that
an intact sensor correctly indicates the situation whereas a faulty sensor produces
an alarm when there is no need and remains silent when hazardous material is
present. The following functional model describes this situation

x =

{
a if θ = θ1, ω = i or θ = θ0, ω = f,
s if θ = θ0, ω = i or θ = θ1, ω = f.

More elaborate sensor models are possible [7, 12]. 4

2.3. Assumption-Based Reasoning with Functional Models

Consider a functional model x = f(θ, ω), with given probabilities p(ω) of the
random elements, describing an experiment E . Suppose that the outcome of the
experiment is observed to be x. Given this data x and the experiment E , what
inference can be made about the value of the unknown parameter θ? The basic
idea of assumption-based reasoning is to assume a random element ω and look
what can be deduced for the unknown parameter under this assumption. After-
wards, the deductions are weighed by the probabilities of the unknown random
elements. This will now be described in details.

First, note that by the observation x, some chance elements ω may become
a posteriori impossible. In fact, if, for an ω ∈ Ω, there is no θ ∈ Θ such that
x = f(θ, ω) holds, then this ω is clearly impossible: it cannot have generated the
actual observation x. So, the observation x induces an event in Ω, which we call
vx,

vx = {ω ∈ Ω : there is a θ ∈ Θ such that x = f(θ, ω)}. (2.1)
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Since by the observation x, we know the event vx has happened, we condition the
probability measure P on Ω to this event vx. This leads to the revised probabilities
p′(ω) = p(ω)/P (vx) for all ω ∈ vx (and p′(ω) = 0 for ω 6∈ vx).

Within vx it remains unknown which chance element ω caused the observation
x, only their respective probabilities p′(ω) are known. Nevertheless, let us suppose
for the time being that ω caused the observation x. Then, the possible parameter
values θ can be restricted to the set

Tx(ω) = {θ ∈ Θ : x = f(θ, ω}. (2.2)

Note that in general it will contain several elements, although in some cases this
is a one-element set. It is even possible that Tx(ω) = Θ, in which case the
observation x, assuming ω, would carry no information about θ. So, in general,
even if the chance element causing the observation would be known, this would
not permit to identify the unknown parameter unambiguously.

But consider a hypothesis about the unknown parameter. Such a hypothesis
is simply described by a subset H ⊆ Θ. This hypothesis may be true or false, and
again, the question can, in general, not be decided unambiguously on the basis of
observation x. However, if we assume that ω is the chance element which caused
the observation x and if Tx(ω) ⊆ H, then, under this assumption ω, H must be
necessarily true. So, it is surely of interest to examine the set of chance elements
ω which imply H in this way,

ux(H) = {ω ∈ vx : Tx(ω) ⊆ H}.
We cannot know if the chance element which caused x belongs to this set, but
we can compute the probability P ′(ux(H)) that this is the case. The larger this
probability, the more hypothesis H becomes credible. Note that if P ′(ux(H)) = 1,
then H must surely be true. On the other hand, P ′(ux(H)) = 0 does not yet
mean that H is necessarily false (this will be discussed again below). We can
see the ω ∈ ux(H) as “arguments” in favor of H, and P ′(ux(H)) indicates the
reliability of these arguments. Therefore,

spx(H) = P ′(ux(H))

is called the degree of support of H. Note carefully that the degree of support of a
hypothesis is always relative to a functional model and an observation generated
by it. The degree of support spx(H) corresponds to the lower probabilities in
the method of Dempster [13, 16] or to belief functions in Shafer’s approach [17].
In fact, it will turn out that spx(H) is formally a belief function in the sense of
Dempster-Shafer theory of evidence. But in contrast to the work of Dempster
and Shafer we obtain our degrees of support from a functional model and we
interpret the degree of support as the reliability of inferences derived from this
model and observations. So the semantics is quite different.

We mentioned above that a vanishing degree of support, spx(H) = 0 does not
imply that H is necessarily false. This would only be the case, if spx(H

c) = 1,
since then the complement Hc of H would be necessarily true. In this case all
ω are arguments against H. In any case, it is interesting not only to consider
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arguments in favor of H, but also arguments against H. The latter are simply
arguments in favor of Hc. The larger the support for Hc, the less plausible H
becomes. Therefore, the probability P ′(ux(H

c)) is called the degree of doubt of
H. Or turned the other way round, we may say the less doubt we have in H, the
more plausible the hypothesis is. Therefore we define the degree of plausibility of
a hypothesis H by

plx(H) = 1− spx(H
c).

This definition can be even more justified when we consider the chance elements
which do not exclude H, that is, those that do not support Hc,

vx(H) = uc
x(H

c) = {ω ∈ vx : Tx(H) ∩H 6= ∅}. (2.3)

This is the set of chance elements for which H remains possible, although not
necessarily true. Note that

plx(H) = P ′(vx(H)).

Also note that spx(H) ≤ plx(H) for all subsets H of Θ. And plx(H) = 0 means
that H is surely false. The degree of plausibility plx(H) corresponds to the upper
probabilities of Dempster and to the plausibility function of Shafer. But again our
semantic is different: plx(H) is the complement of the reliability of the deduction
of Hc from the functional model and the observation.

So, using a functional model and an observation x generated by it, we may
infer about the unknown parameter θ by determining “arguments”, i.e. chance
elements, which, if they would be the actual chance elements causing the obser-
vation, would allow to deduce H necessarily. This permits to compute degrees of
support and plausibilities for any hypothesis and thus to judge their credibility.
This may be the base for some decisions. But this comes only after the inference
(see Section 5.1).

Let us illustrate this procedure of assumption-based reasoning with a few
examples.

Example 2.4 (A simple coin). First we look at the model of a simple coin,
example 2.1 above. Assume that x = heads has been observed. Then both
random elements remain possible, i.e. vheads = {1, 2}. If we assume that face 1
turned up, i.e. ω = 1, then Theads(1) = {θ0, θ1}, i.e. under this assumption the
experiment produces no information whatsoever about the unknown coin. If we
assume however that face 2 turned up, i.e. ω = 2, then Theads(2) = {θ1}, i.e.
we must necessarily conclude that the coin carries heads on both sides. Thus,
we get spheads(θ1) = 1/2, whereas spheads(θ0) = 0 (for one-element sets we write
spheads({θ1}) = spheads(θ1)). There is no support for hypothesis θ0. However, this
hypothesis remains plausible to the degree plheads(θ0) = 1 − spheads(θ1) = 1/2.
Nothing speaks against hypothesis θ1, such that plheads(θ1) = 1.

If we observe tails, then, clearly, we must conclude that necessarily face 2 is
turned up. So we have vtails = {2}. It is clear in this case that hypothesis θ0

must hold. This is reflected by the fact that Ttails(2) = {θ0} and sptails(θ0) =
pltails(θ0) = 1, whereas sptails(θ1) = pltails(θ1) = 0. 4
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Example 2.5 (A sensor model). Next we examine the example of a test,
according to example 2.3. Assume that the sensor signals an alarm, x = a. Note
that both assumptions are still possible, va = {i, f}. If we assume the sensor is
intact, then we must conclude necessarily that the hazardous material is present,
Ta(i) = θ1, whereas, if we assume the sensor failed, then necessarily there is no
hazardous material present, Ta(f) = θ0. From this we conclude

spa(θ1) = pla(θ1) = p, spa(θ0) = pla(θ0) = 1− p.

Similarly, if x = s we obtain

sps(θ1) = pls(θ1) = 1− p, sps(θ0) = pls(θ0) = p.

In this example the sets Tx(ω) are all single element sets. In this particular
situation, and only in this one, the degrees of support and of plausibility coincide,
and also the degrees of support and plausibilities of complementary hypotheses
sum up to one. 4

Example 2.6 (An urn model). Finally let us look at the urn model, example
2.2 above. But we propose to consider an alternative version of the model cor-
responding to an infinite population. That is, we take for Ω, Θ and X the unit
interval [0, 1] with uniformly distributed chance elements ω ∈ Ω. The functional
model is

x = f(θ, ω) =

{
white if ω ≤ θ,
black otherwise.

This model represents the limiting case of the finite urn model of example 2.2
if N is very large. This model violates the requirement of finite sets Ω, Θ and
X, but the assumption-based analysis can be executed exactly as in the discrete
case.

If we draw only one ball, the situation is very simple, but not very informative.
Suppose the ball drawn is white, x = white. All random elements remain possible,
vwhite = [0, 1]. If we assume the chance element ω, then we conclude that θ must
belong to Twhite(ω) = {θ : θ ≥ ω}. Similarly, if the ball drawn is black, then again
all random elements remain possible (except ω = 0, but this event has probability
zero anyway) and Tblack(ω) = {θ : θ < ω}.

Of more interest is the case when the experiment is executed n times with
independent chance elements ω, corresponding to n draws of a ball with replace-
ment. Let ω = (ω1, . . . , ωn) be the corresponding random elements, the number
of the balls drawn. Without loss of generality we may reorder and renumber the
given sample such that the first x balls are white and the remaining n − x are
black. Then it becomes apparent that the first x random numbers ωi must all be
smaller than the last n− x ones. So, we have

vx = {ω : max
i=1,...,x

ωi < min
j=x+1,...,n

ωj}. (2.4)



16 2. INFERENCE WITH FUNCTIONAL MODELS

In order to condition the probabilities we must compute the probability of vx.
We introduce the new random variables

Yx = max
i=1,...,x

ωi, Zn−x = min
j=x+1,...,n

ωj.

The cumulative distribution functions of these two random variables are

P (Yx ≤ t) = tx, t ∈ [0, 1], P (Zn−x > s) = (1− s)n−x, s ∈ [0, 1],

and their respective density functions are xtx−1 and (n− x)(1− s)n−x−1. The set
vx is now determined by the condition Yx < Zn−x. Its probability is

P (vx) = P (Yx < Zn−x) =

∫ 1

0

xtx−1(1− t)n−xdt

=
xΓ(x)Γ(n− x + 1)

Γ(n + 1)
(2.5)

where Γ(x) denotes the gamma function. Note that the inverse of P (vx) equals
the binomial coefficient

(
n
x

)
.

If we fix a ω ∈ vx, then we can conclude that Tx(ω) = {Yx ≤ θ < Zn−x}. This
allows to compute degrees of support. For example, for hypotheses like [a, b],
where 0 ≤ a < b ≤ 1, we obtain

spx(a ≤ θ ≤ b) = P ′(Tx(ω) ⊆ [a, b))

=

∫ b

a
xtx−1((1− t)n−x − (1− b)n−x)dt

P (vx)

=

∫ b

a

Γ(n + 1)

Γ(x)Γ(n− x + 1)
tx−1(1− t)n−xdt

−
(

n

x

)
(bx − ax)(1− b)n−x.

The integrand of the last integral is the density of the beta distribution with
parameters x and n − x + 1. If bex,n−x+1 denotes the corresponding cumulative
distribution function, we finally get

spx(a ≤ θ ≤ b) = bex,n−x+1(b)− bex,n−x+1(a)−
(

n

x

)
(bx − ax)(1− b)n−x.

Also of interest may be the plausibilities of singletons {θ},

plx(θ) = P ′(Yx ≤ θ ≤ Zn−x) =

(
n

x

)
θx(1− θ)n−x.

These plausibilities are proportional to the likelihood function associated with
the experiment. Models that are similar to this urn model have been treated in
[13, 16]. 4

These examples show two things. First, the probability statements about
the unknown parameter do not lead in general to a probability measure on the
parameter space Θ as is suggested sometimes by fiducial probability. But still it
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is possible to make probability statements about the unknown parameter with a
very clear meaning: the degree of support of a hypothesis is the probability that
the hypothesis can be logically deduced from the model and the data, i.e. the
probability that sufficient assumptions hold true to derive the hypothesis. The
degree of plausibility is the probability that the hypothesis cannot be refuted.
Second, the likelihood function does not contain the full information about the
parameter. In particular it makes no sense to normalize it to one and use it as
a probability measure as has been sometimes proposed (for example in [38] part
II).

An observation x related to a functional model together with the model itself
represent a piece of information about the unknown parameter θ. If we take
this point of view, we obtain an interesting structure. First we note that this
information is uncertain in that it can be interpreted under different assumptions,
and under each assumption we come to a certain conclusion about the unknown
value. This resembles Shafer’s random message model [17] for belief functions.
The different possible assumptions are the possible values of ω in vx. And if
we select an assumption ω from vx, then we conclude that the unknown value
of θ must be in Tx(ω). Tx represents a multivalued mapping from vx into the
set Θ (as proposed by Dempster [14]). Finally, the possible assumptions in vx

have known probabilities p′(ω). Thus, finally, the information represented by
the observation x can be summarized in a quadruple Hx = (vx, p

′, Tx, Θ). We
call such a quadruple a hint [7]. Hints are of interest in themselves, since they
allow to model any uncertain information, not only statistical data. Therefore,
we introduce hints in general and discuss them in the following chapter.


